RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.
CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.
RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.
FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available.
CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.