Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Gan S, Lau EV, Ng HK
    J Hazard Mater, 2009 Dec 30;172(2-3):532-49.
    PMID: 19700241 DOI: 10.1016/j.jhazmat.2009.07.118
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic micropollutants which are resistant to environmental degradation due to their highly hydrophobic nature. Concerns over their adverse health effects have resulted in extensive studies on the remediation of soils contaminated with PAHs. This paper aims to provide a review of the remediation technologies specifically for PAH-contaminated soils. The technologies discussed here include solvent extraction, bioremediation, phytoremediation, chemical oxidation, photocatalytic degradation, electrokinetic remediation, thermal treatment and integrated remediation technologies. For each of these, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.
    Matched MeSH terms: Soil Pollutants/chemistry*
  2. Yap CL, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2015 Jan;22(1):329-42.
    PMID: 25065478 DOI: 10.1007/s11356-014-3199-7
    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.
    Matched MeSH terms: Soil Pollutants/chemistry*
  3. Venny, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2014 Feb;21(4):2888-97.
    PMID: 24151025 DOI: 10.1007/s11356-013-2207-7
    Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe(3+)/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.
    Matched MeSH terms: Soil Pollutants/chemistry*
  4. Suratman S, Hang HC, Shazili NA, Mohd Tahir N
    Bull Environ Contam Toxicol, 2009 Jan;82(1):16-9.
    PMID: 18665317 DOI: 10.1007/s00128-008-9507-5
    This paper presents a preliminary result carried out in the Besut River basin, Terengganu, Malaysia to determine the selected trace metal concentrations. Concentrations of dissolved Pb, Cu, and Fe during the present study were in the range of 3.3-8.3 microg/L Pb, 0.1-0.3 microg/L Cu, and 1.1-12.3 microg/L Fe. For the particulate fraction concentrations of Pb, Cu, and Fe ranged from 1.0 to 3.6 microg/L, 0.3 to 2.8 microg/L, and 114 to 1,537 microg/L, respectively. The concentrations of metals in this study area, in general, were lower than those reported for other study areas. Higher metal concentrations measured in the wet monsoon season suggest that the input was mainly due to terrestrial runoff.
    Matched MeSH terms: Soil Pollutants/chemistry
  5. Mohajeri L, Aziz HA, Isa MH, Zahed MA, Mohajeri S
    Bull Environ Contam Toxicol, 2010 Jul;85(1):54-8.
    PMID: 20577869 DOI: 10.1007/s00128-010-0058-1
    Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
    Matched MeSH terms: Soil Pollutants/chemistry
  6. Muhamad H, Ismail BS, Sameni M, Mat N
    Environ Monit Assess, 2011 May;176(1-4):43-50.
    PMID: 20582739 DOI: 10.1007/s10661-010-1565-6
    The adsorption equilibrium time and effects of pH and concentration of (14)C-labeled paraquat (1,1(')-dimethyl-4,4(')-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of (14)C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 μ g g(-1) (clay) at 1 μ g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of (14)C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 μ g g(-1), respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 μ g g(-1), respectively. Results also suggested that paraquat sorption by soil is concentration dependent.
    Matched MeSH terms: Soil Pollutants/chemistry*
  7. Yavari S, Sapari NB, Malakahmad A, Yavari S
    J Hazard Mater, 2019 03 15;366:636-642.
    PMID: 30579230 DOI: 10.1016/j.jhazmat.2018.12.022
    Imidazolinones as a persistent and active herbicides group have potential risks to non-target organisms in the environment. Biochar is a carbon-rich sorbent used as an amendment to change soil properties and its microbial communities effective on pesticides degradation rate. The present study was the first to compare empty fruit bunch (EFB) of oil palm and rice husk (RH) biomasses as biochar feedstock for remediation of imidazolinones-contaminated soils. Degradations of imazapic, imazapyr, and a mixture of them (Onduty®) was investigated in the presence of the optimized biochars in the soil during a 70-days incubation. Based on the results, the polar herbicides were resistant to hydrolysis degradation. Photolysis rates of the herbicides reduced significantly in the presence of the biochars in the soil. EFB biochar had greater effects due to its chemical compositions and surface functional groups. Photo-degradation of imazapyr was more affected by biochars amendment. The imidazolinones bio-degradation, however, accelerated significantly with the presence of EFB and RH biochars in soil with the greater effects of RH biochar. It was concluded that the application of the optimized EFB and RH biochars as an innovative sustainable strategy has the potential to decrease the persistence of the imidazolinones and minimize their environmental hazards.
    Matched MeSH terms: Soil Pollutants/chemistry*
  8. Xing SC, Chen JY, Lv N, Mi JD, Chen WL, Liang JB, et al.
    Chemosphere, 2018 Nov;211:804-816.
    PMID: 30099165 DOI: 10.1016/j.chemosphere.2018.08.005
    The lead (Pb2+) bioaccumulation capacities and mechanisms of three different physiological structures (vegetative cells, decay cells and spores) of B. coagulans R11 isolated from a lead mine were examined in this study. The results showed that the total Pb2+ removal capacity of vegetative cells (17.53 mg/g) was at its optimal and higher than those of the spores and decay cells at the initial lead concentration of 50 mg/L. However, when the initial lead concentration surpassed 50 mg/L, Pb2+ removal capacity of decay cells was more efficient. Zeta potential, Fourier transform infrared (FTIR) and functional group modification analyses demonstrated that the electrostatic attraction and chelating activity of the functional groups were the primary pathways involved in the extracellular accumulation of Pb2+ by the vegetative cells and spores. However, the primary Pb2+ binding pathway in the decay cells was hypothesized to be due to physical adsorption, which easily led to Pb2+ desorption. Based on these results, we conclude that the vegetative cell is the ideal lead sorbent. Therefore, it is important to inhibit the transformation of the vegetative cells into decay cells and spores, which can be achieved by culturing the bacteria under anaerobic conditions to prevent spore formation. Heat stimulation can effectively enhance spore germination to generate vegetative cells.
    Matched MeSH terms: Soil Pollutants/chemistry*
  9. Lee S, Ko IW, Yoon IH, Kim DW, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):469-480.
    PMID: 29574658 DOI: 10.1007/s10653-018-0099-7
    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
    Matched MeSH terms: Soil Pollutants/chemistry*
  10. Ng YS, Sen Gupta B, Hashim MA
    Environ Sci Pollut Res Int, 2016 Jan;23(1):546-55.
    PMID: 26330317 DOI: 10.1007/s11356-015-5290-0
    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.
    Matched MeSH terms: Soil Pollutants/chemistry*
  11. Chai LK, Wong MH, Mohd-Tahir N, Hansen HC
    Chemosphere, 2010 Apr;79(4):434-40.
    PMID: 20189217 DOI: 10.1016/j.chemosphere.2010.01.046
    Acephate is poorly sorbed to soil, thus the risk of leaching to the aquatic environment is high if it is not quickly degraded. The effect of soil moisture, temperature, microbial activity and application rate on acephate degradation has been studied in three Malaysian soils to examine and identify critical variables determining its degradation and mineralization kinetics. First-order kinetics could be used to describe degradation in all cases (r(2)>0.91). Acephate degraded faster in air-dry (t((1/2)) 9-11 d) and field capacity (t((1/2)) 10-16d) soils than in the wet soils (t((1/2)) 32-77 d). The activation energy of degradation was in the range 17-28 kJ mol(-1) and significantly higher for the soil with higher pH and lower clay and iron oxide contents. Soil sterilization caused a 3- to 10-fold decrease in degradation rates compared to non-sterile soils (t((1/2)) 53-116 d) demonstrating that acephate degradation is mainly governed by microbial processes. At 5-fold increase in application rates (25 microg g(-1)), half-life increased slightly (t((1/2)) 13-19 d) or was unaffected. Half-life from acephate mineralization was similar to those from degradation but much longer at the 5-fold increase in acephate application rates (t((1/2)) 41-96 d) demonstrating that degradation of metabolites is rate limiting. Thus, application of acephate should be restricted or avoided during wet seasons with heavy rainfall and flooded soil as in paddy cultivation. Sandy soils with low microbial activity are more prone to acephate leaching than clay soils rich in humic matter.
    Matched MeSH terms: Soil Pollutants/chemistry
  12. Sayyed RZ, Wani SJ, Alarfaj AA, Syed A, El-Enshasy HA
    PLoS One, 2020;15(1):e0220095.
    PMID: 31910206 DOI: 10.1371/journal.pone.0220095
    There are numerous reports on poly-β-hydroxybutyrate (PHB) depolymerases produced by various microorganisms isolated from various habitats, however, reports on PHB depolymerase production by an isolate from plastic rich sites scares. Although PHB has attracted commercial significance, the inefficient production and recovery methods, inefficient purification of PHB depolymerase and lack of ample knowledge on PHB degradation by PHB depolymerase have hampered its large scale commercialization. Therefore, to ensure the biodegradability of biopolymers, it becomes imperative to study the purification of the biodegrading enzyme system. We report the production, purification, and characterization of extracellular PHB depolymerase from Stenotrophomonas sp. RZS7 isolated from a dumping yard rich in plastic waste. The isolate produced extracellular PHB depolymerase in the mineral salt medium (MSM) at 30°C during 4 days of incubation under shaking. The enzyme was purified by three methods namely ammonium salt precipitation, column chromatography, and solvent purification. Among these purification methods, the enzyme was best purified by column chromatography on the Octyl-Sepharose CL-4B column giving optimum yield (0.7993 Umg-1mL-1). The molecular weight of purified PHB depolymerase was 40 kDa. Studies on the assessment of biodegradation of PHB in liquid culture medium and under natural soil conditions confirmed PHB biodegradation potential of Stenotrophomonas sp. RZS7. The results obtained in Fourier-Transform Infrared (FTIR) analysis, High-Performance Liquid Chromatography (HPLC) study and Gas Chromatography Mass-Spectrometry (GC-MS) analysis confirmed the biodegradation of PHB in liquid medium by Stenotrophomonas sp. RZS7. Changes in surface morphology of PHB film in soil burial as observed in Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the biodegradation of PHB under natural soil environment. The isolate was capable of degrading PHB and it resulted in 87.74% biodegradation. A higher rate of degradation under the natural soil condition is the result of the activity of soil microbes that complemented the biodegradation of PHB by Stenotrophomonas sp. RZS7.
    Matched MeSH terms: Soil Pollutants/chemistry*
  13. Chai LK, Wong MH, Bruun Hansen HC
    J Environ Manage, 2013 Aug 15;125:28-32.
    PMID: 23632002 DOI: 10.1016/j.jenvman.2013.04.005
    The insecticide chlorpyrifos is extensively used in the humid tropics for insect control on crops and soils. Chlorpyrifos degradation and mineralization was studied under laboratory conditions to characterize the critical factors controlling the degradation and mineralization in three humid tropical soils from Malaysia. The degradation was fastest in moist soils (t1/2 53.3-77.0 days), compared to dry (t1/2 49.5-120 days) and wet soils (t1/2 63.0-124 days). Degradation increased markedly with temperature with activation energies of 29.0-76.5 kJ mol(-1). Abiotic degradation which is important for chlorpyrifos degradation in sub-soils containing less soil microbial populations resulted in t½ of 173-257 days. Higher chlorpyrifos dosages (5-fold) which are often applied in the tropics due to severe insects infestations caused degradation and mineralization rates to decrease by 2-fold. The mineralization rates were more sensitive to the chlorpyrifos application rates reflecting that degradation of metabolites is rate limiting and the toxic effects of some of the metabolites produced. Despite that chlorpyrifos is frequently used and often in larger amounts on tropical soils compared with temperate soils, higher temperature, moderate moisture and high activity of soil microorganisms will stimulate degradation and mineralization.
    Matched MeSH terms: Soil Pollutants/chemistry*
  14. Soda W, Noble AD, Suzuki S, Simmons R, Sindhusen LA, Bhuthorndharaj S
    J Environ Qual, 2006 Oct 27;35(6):2293-301.
    PMID: 17071900
    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.
    Matched MeSH terms: Soil Pollutants/chemistry
  15. Othman R, Hasni SI, Baharuddin ZM
    J Environ Biol, 2016 09;37(5 Spec No):1181-1185.
    PMID: 29989751
    Degradation or decline of soil quality that cause shallow slope failure may occur due to physical or chemical processes. It can be triggered off by natural phenomena, or induced by human activity through misuse of land resources, excessive development and urbanization leading to deforestation and erosion of covered soil masses causing serious threat to slopes. The extent of damage of the slopes can be minimized if a long-term early warning system is predicted in the landslide prone areas. The aim of the study was to characterize chemical properties of stable and unstable slope along selected highways of Malaysia which can be manipulated as indicator to forecast shallow slope failure. The elements in soil chemical properties contributed to each other as binding agents that affected the existing soil structure. It could make the soil structure strong or weak. Indicators that can be used to predict shallow slope failure were low content in iron, lead, aluminum, chromium, zinc, low content of organic carbon and CEC.
    Matched MeSH terms: Soil Pollutants/chemistry*
  16. Jalilian Ahmadkalaei SP, Gan S, Ng HK, Abdul Talib S
    Environ Sci Pollut Res Int, 2016 Nov;23(21):22008-22018.
    PMID: 27539472
    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R (2), between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.
    Matched MeSH terms: Soil Pollutants/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links