Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Jose JE, Padmanabhan S, Chitharanjan AB
    Am J Orthod Dentofacial Orthop, 2013 Jul;144(1):67-72.
    PMID: 23810047 DOI: 10.1016/j.ajodo.2013.02.023
    The objectives of the study were to evaluate and compare the effects of the systemic consumption of probiotic curd and the topical application of probiotic toothpaste on the Streptococcus mutans levels in the plaque of orthodontic patients.
    Matched MeSH terms: Streptococcus mutans/drug effects*; Streptococcus mutans/isolation & purification
  2. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Streptococcus mutans/drug effects*; Streptococcus mutans/physiology
  3. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS
    Drug Deliv Transl Res, 2019 04;9(2):434-443.
    PMID: 29392681 DOI: 10.1007/s13346-018-0488-6
    The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
    Matched MeSH terms: Streptococcus mutans/drug effects; Streptococcus mutans/growth & development
  4. Mohammed Sulayman Baree, Mohammed Elwathig Saeed Mirghani, Slimane Hammou Aboulala
    MyJurnal
    Introduction: This is a proto-type product which is based on Frankincense essential oil and hydrosol. Methods: Three oleo gum resin species, namely; Boswellia carterii (BC), Boswellia frereana (BF), and Commiphora myrrha (CM) of Burceraceae family were extracted for their essential oil by hydro-distillation. They were screened for their poten-tial of anti-cariogenic activity by in-vitro experimental study of two main bacterial species (Streptococcus mutans and Lactobacillus spp), which are considered the main cause of dental and mouth diseases. Results: Methanol and acetone extracts of the three plants inhibited the growth of the bacteria. However, BF-methanol extract shows the greatest inhibition followed by BC and CM respectively. Hence, the obtained result encourages proceeding further thorough investigation to benefit the positive outcomes of these plant extracts in terms of introducing new potential antimicrobial formulations, such as mouth wash which can be used for mouth cleansing and protection from the diseases such as mouth ulcers, gingivitis, sinusitis, glandular fever and brucellosis as well as dental caries. This result can be converted to Boswellia Mouthwash Essential Oil (BosMEO) and Boswellia Mouthwash Hydrosol (BosMoHy) based products. This new plant extract product can be exploited for further research for its potential used as moth infection natural treatments such as mouth ulcers, gingivitis, sinusitis, glandular fever, brucellosis as well as respi-ratory problem. It is free of synthetic chemicals, organic, natural, plant based, and halal with no major health side effects. Conclusion: Plant-based product which is free from synthetic chemicals and with minimal side effects will satisfy its quality efficiency.
    Matched MeSH terms: Streptococcus mutans
  5. Siti Aisyah Abd Ghafar, Muhammad Fikhry Mohd Salehuddin,, Nur Syamimi Syuhada Che Awang, Rohazila Mohamad Hanafiah
    MyJurnal
    Introduction:Spilanthes acmella, also known as “subang nenek’, has been used traditionally in Malaysia to treat toothache. A previous study has shown Spilanthes acmella leaves extracts (SALE) inhibit Streptococcus mutans growth. Streptococcus mutans is commonly found in the human oral cavity and is the main contributor to tooth de-cay. There is no study on the antibacterial effects of Spilanthes acmella flower extracts (SAFE) against Streptococcus mutans reported to date. Therefore, the objective of this study is to investigate antibacterial properties of SAFE against S. mutans. Methods:S. mutans was subcultured in Muller Hinton (MH) broth and agar. Sequential extractions of S. acmella flowers were conducted using four different solvents with increasing polarity, [n- hexane, dichloromethane (DCM), acetone, methanol (MeoH)] and tested with different concentrations against S. mutans via the disc diffusion assay, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Sodium fluoride (NaF) was used as a positive control while DMSO was used as a negative control. Results: The disc diffusion assay shows SAFE inhibited Streptococcus mutans growth. SAFE-DCM shows the greatest inhibition properties (12.33±2.30 mm) followed by SAFE-n-hexane (11.33±0.57 mm). Meanwhile, SAFE-Meoh and SAFE-acetone show no inhibition zone (6.00±0.001 mm). MIC value for SAFE-DCM and SAFE-n-hexane is 12.5 mg/mL respectively. Whereas, MBC value SAFE-DCM and SAFE-n-hexane is 50.0 mg/mL respectively. Conclusion: It can be concluded SAFE-DCM and SAFE-n-hexane possesses bactericidal properties against Streptococcus mutans.
    Matched MeSH terms: Streptococcus mutans
  6. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA
    AMB Express, 2017 Nov 21;7(1):210.
    PMID: 29164404 DOI: 10.1186/s13568-017-0515-x
    Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
    Matched MeSH terms: Streptococcus mutans
  7. Mohd Hafiz Arzmi
    MyJurnal
    A balanced oral microbiome is essential in maintaining a healthy oral cavity. Oral microbiome comprises of var-ious microorganisms that belong to different kingdoms, including bacteria (bacteriome) and fungal (mycobiome). Multiple factors have been shown in oral carcinogenesis including alcohol consumption, tobacco smoking, betel nut chewing and microbial infections. Since the oral cavity comprises of various microbial kingdoms, thus, in-ter-kingdom interactions are suggested in promoting oral carcinogenesis. Dysbiosis, which is defined as imbalance inter-kingdom microbiome, alone may not cause oral carcinogenesis; thus, it is suggested that nutritional factor may also play a vital role in this disease development. A recent study has shown that sucrose consumption can induce the production of glucosyltransferases (gtfs) by Streptococcus mutans which lead to the increasing attachment of Candida albicans in polymicrobial biofilms form. The yeast has been reported to be potentially involved in oral carcinogenesis, particularly in the immunocompromised patient. This is due to the inflammation that is caused by candidal infection, which increases pro-inflammatory cytokines such as interleukin-6, interleukin-8 and interleu-kin-10, that have been linked to oral carcinogenesis. However, further study is needed to conform to the claim. In addition, over-consumption of alcoholic beverages has also been related to carcinogenesis which the ethanol has been reported to be converted into acetaldehyde by C. albicans using acetaldehyde dehydrogenases enzymes. In Malaysia, oral cancer has also been related to the consumption of cured and salted fish, which mostly consumed by the Chinese ethnics. However, its relationship to oral microbiome remains unclear. In conclusion, oral microbiome and nutrition may have a role in oral carcinogenesis; however, further study is needed to elucidate the role of both factors in oral cancer development.
    Matched MeSH terms: Streptococcus mutans
  8. Nurul Fatihah Mohamed Yusoff, Basma Ezzat Mustafa, Pram Kumar Subramaniam, Nazih Shaban Mustafa, Muhannad Ali Kashmoola, Khairani Idah Mokhtar, et al.
    MyJurnal
    Introduction:Linum usitatissimum (flax seed) has been cultivated for domestic use since prehistoric times. Its use as a dietary supplement becomes more popular nowadays. Nigella sativa seeds and oils have been widely used for centuries in the treatment of various ailments throughout the world. It is an important drug in the Indian traditional system of medicine like Unani and Ayurveda. Methods: This is a laboratory experimental in-vitro study using select-ed oral pathogens (Streptococcus mutans, Klebsiella pneumoniae and Pseudomonas aeruginosa) cultured in nutrient agar. The pathogens were then inoculated in nutrient based broth and incubation for 24hours. Linum usitatissimum and Nigella sativa extract efficacy was tested by measurement of the zone of inhibition. The result of the extracts antimicrobial activities were compared with positive control (penicillin) and negative control(Dimethyl sulfoxide DMSO). The statistical analysis was done by using SPSS18. Results: The antibacterial effect of Linum usitatissimum and Nigella sativa extract is comparable to the effect of penicillin and this study shows that flax seed extract shows more potent antibacterial effect than Nigella sativa on Streptococcus mutans and Pseudomonas aeruginosa while both extracts didn’t show an effect on Klebsiella pneumoniae. Conclusion: The results of the present study scien-tifically validate the inhibitory capacity of Linum usitatissimum or Nigella sativa as antibiotic against selective oral pathogens this will contribute towards the development of new treatment options based on natural base products.
    Matched MeSH terms: Streptococcus mutans
  9. Abdul Razak F, Baharuddin BA, Akbar EFM, Norizan AH, Ibrahim NF, Musa MY
    Arch Oral Biol, 2017 Aug;80:180-184.
    PMID: 28448807 DOI: 10.1016/j.archoralbio.2017.04.014
    OBJECTIVE: Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia(®), Tropicana Slim(®), Pal Sweet(®) and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation.

    METHODS: Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control.

    RESULTS: Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05).

    CONCLUSION: Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents.

    Matched MeSH terms: Streptococcus mutans
  10. Shafiei Z, Shuhairi NN, Md Fazly Shah Yap N, Harry Sibungkil CA, Latip J
    PMID: 23049613 DOI: 10.1155/2012/825362
    Myristica fragrans Houtt is mostly cultivated for spices in Penang Island, Malaysia. The ethyl acetate and ethanol extracts of flesh, mace and seed of Myristica fragrans was evaluated the bactericidal potential against three Gram-positive cariogenic bacteria (Streptococcus mutans ATCC 25175, Streptococcus mitis ATCC 6249, and Streptococcus salivarius ATCC 13419) and three Gram-negative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans ATCC 29522, Porphyromonas gingivalis ATCC 33277, and Fusobacterium nucleatum ATCC 25586). Antibacterial activities of the extracts was determined by twofold serial microdilution, with minimum inhibitory concentrations (MIC) ranging from 1.25 to 640 mg/mL and 0.075 to 40 mg/mL. The minimum bactericidal concentration (MBC) was obtained by subculturing method. Among all extracts tested, ethyl acetate extract of flesh has the highest significant inhibitory effects against Gram-positive and Gram-negative bacteria with mean MIC value ranging from 0.625 to 1.25 ± 0.00 (SD) mg/mL; P = 0.017) and highest bactericidal effects at mean MBC value ranging from 0.625 mg/mL to 20 ± 0.00 (SD) mg/mL. While for seed and mace of Myristica fragrans, their ethanol extracts exhibited good antibacterial activity against both groups of test pathogens compared to its ethyl acetate extracts. All of the extracts of Myristica fragrans did not show any antibacterial activities against Fusobacterium nucleatum ATCC 25586. Thus, our study showed the potential effect of ethyl acetate and ethanol extracts from flesh, seed and mace of Myristica fragrans to be new natural agent that can be incorporated in oral care products.
    Matched MeSH terms: Streptococcus mutans
  11. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

    Matched MeSH terms: Streptococcus mutans/drug effects
  12. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Streptococcus mutans/drug effects; Streptococcus mutans/physiology
  13. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Streptococcus mutans/drug effects
  14. El-Sayed NN, Alafeefy AM, Bakht MA, Masand VH, Aldalbahi A, Chen N, et al.
    Molecules, 2016 Dec 02;21(12).
    PMID: 27918459
    Some novel hydrazone derivatives 6a-o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, ¹H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A₂ (sPLA₂), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA₂ rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a-o with GIIA sPLA₂, proteinase K and hydrazones 6a-e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
    Matched MeSH terms: Streptococcus mutans/growth & development
  15. Alp S, Baka ZM
    Am J Orthod Dentofacial Orthop, 2018 Oct;154(4):517-523.
    PMID: 30268262 DOI: 10.1016/j.ajodo.2018.01.010
    INTRODUCTION: In this study, we aimed to determine the effect of regular probiotic consumption on microbial colonization in saliva in orthodontic patients and to comparatively evaluate the difference between the systemic consumption of probiotic products and the local application.

    METHODS: This study included 3 groups with 15 orthodontic patients in each. The control group included patients who had no probiotic treatment, the subjects in the kefir group consumed 2 × 100 ml of kefir (Atatürk Orman Ciftligi, Ankara, Turkey) per day, and the subjects in the toothpaste group brushed their teeth with toothpaste with probiotic content (GD toothpaste; Dental Asia Manufacturing, Shah Alam, Selangor, Malaysia) twice a day. Samples were collected at 3 times: beginning of the study, 3 weeks later, and 6 weeks later. The salivary flow rate, buffer capacity, and Streptococcus mutans and Lactobacillus levels in the saliva were evaluated. Chair-side kits were used to determine the S mutans and Lactobacillus levels.

    RESULTS: A statistically significant decrease was observed in the salivary S mutans and Lactobacillus levels in the kefir and toothpaste groups compared with the control group (P <0.05). A statistically significant increase was observed in the toothpaste group compared with the control and kefir groups in buffer capacity. Changes in the salivary flow rate were not statistically significant.

    CONCLUSIONS: The regular use of probiotics during fixed orthodontic treatment reduces the S mutans and Lactobacillus levels in the saliva.

    Matched MeSH terms: Streptococcus mutans/drug effects*
  16. Ganguly A, Ian CK, Sheshala R, Sahu PS, Al-Waeli H, Meka VS
    J Mater Sci Mater Med, 2017 Mar;28(3):39.
    PMID: 28144851 DOI: 10.1007/s10856-017-5852-4
    The objective of this study was to prepare periodontal gels using natural polymers such as badam gum, karaya gum and chitosan. These gels were tested for their physical and biochemical properties and assessed for their antibacterial activity against Aggregatibacter actinomycetemcomitans and Streptococcus mutans, two pathogens associated with periodontal disease. Badam gum, karaya gum and chitosan were used to prepare gels of varying concentrations. Moxifloxacin hydrochloride, a known antimicrobial drug was choosen in the present study and it was added to the above gels. The gels were then run through a battery of tests in order to determine their physical properties such as pH and viscosity. Diffusion studies were carried out on the gels containing the drug. Antimicrobial testing of the gels against various bacteria was then carried out to determine the effectiveness of the gels against these pathogens. The results showed that natural polymers can be used to produce gels. These gels do not have inherent antimicrobial properties against A. actinomycetemcomitans and S. mutans. However, they can be used as a transport vehicle to carry and release antimicrobial drugs.
    Matched MeSH terms: Streptococcus mutans/drug effects*
  17. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
    Matched MeSH terms: Streptococcus mutans/drug effects
  18. Sulugodu Ramachandra S
    Saudi Dent J, 2014 Apr;26(2):47-9.
    PMID: 25408595 DOI: 10.1016/j.sdentj.2013.12.002
    This article is a traditional literature review on caries levels in aggressive periodontitis. Aggressive periodontitis generally affects systemically healthy individuals aged <30 years (older individuals can also be affected) and is characterized by a young age of onset, rapid rate of disease progression, and familial aggregation of cases. Dental caries is caused by the dissolution of enamel by acid-producing bacteria present in the plaque biofilm, especially when the biofilm reaches critical mass due to improper oral hygiene. The association between caries level and aggressive periodontitis has long been debated. Initial research indicated that caries levels were high in patients with aggressive periodontitis, but high-quality studies have consistently shown that caries and aggressive periodontitis are inversely related. A recent in vitro study showed that Streptococcus mutans was killed more readily in the saliva of patients with aggressive periodontitis and Aggregatibacter actinomycetemcomitans positivity than in patients with A. actinomycetemcomitans negativity. Other mechanisms possibly explaining the inverse relationship between caries and aggressive periodontitis in cases of Down's syndrome are also discussed in this literature review. The usefulness of caries level in the diagnosis of aggressive periodontitis in developing countries such as India, where the disease is diagnosed primarily on the basis of clinical and radiographic features and familial history is also discussed.
    Matched MeSH terms: Streptococcus mutans
  19. Mohamed Soleiman Barre, Fathilah Ali, Mohamed Elwathig Saeed Mirghani, Noor Faizul Hadri Nordin
    MyJurnal
    The global burden of disease studies estimated that oral diseases affected half of the world’s population (3.58 billion people) with dental caries (tooth decay) in permanent teeth being the most prevalent condition assessed. On the other hand, the increasing resistance of dental caries towards the available antimicrobials and extensive use of the controversial synthetic chemicals to overcome these problems have attracted the scientific community’s attention to the search for new cost-effective remedies of natural products. Frankincense or Boswellia species are highly import-ant aromatic plants belonging to the Burseraceae family. The present study will focus on an in-vitro anti-inflamma-tion and anti-bacterial activity of Boswellia carterii (BC) Essential oil (EO) encapsulated into the Gum Arabic (GA) polymer. Thus, certain mouth pathogenic bacteria, which are the main contributors to dental caries and gingivitis, namely (Streptococcus mutans and Lactobacillus species), and their in-vitro responses to the defined micro-particles, will pave the way to introduce a new potential remedy to the forth mentioned problems.
    Matched MeSH terms: Streptococcus mutans
  20. Rohazila Mohamad Hanafiah, Siti Nor Asma Musa, Siti Aisyah Abd Ghafar
    MyJurnal
    Introduction: Silver nanoparticles has been proven to be an effective agent for antimicrobial efficacy against bacte-ria, viruses and other eukaryotic microorganisms. Green synthesis is one of the methods that has been developed to synthesize silver nanoparticles in environmentally-friendly conditions. It uses plant extracts as reducing and capping agents. Besides act as reducing and capping agents, bioactives such as phenolic compounds may bind to silver nanoparticles and enhance its medicinal properties. Strobilanthes crispus is a Malaysian native plant. Previous stud-ies had shown that S. crispus contains polyphenols, catechins, alkaloids, caffeine, tannins and vitamins. Therefore, the aim of this study is to determine antibacterial activities of silver nanoparticles-Strobilanthes crispus (AgNP-SC) against clinically important pathogens such as Escherichia coli, Pseudomonas aeruginosa and Streptococcus mutans. Methods: The disc diffusion assay (DDA) was performed to investigate the inhibition zone of AgNps-Sc towards E. coli, P. aeruginosa and S. mutans. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) was used to determine bactericidal/bacteriostatic profile of AgNP- SC against E. coli, P. aeruginosa and S. mu-tans. Results: AgNP-SC (40mg/mL) shows the greatest inhibition properties (12.67±0.6mm) against S. mutans when compared to Strobilanthes crispus leaves extract (6.0±0.001mm) and blank silver nanoparticles (6.0±0.001mm). MIC values for AgNP-SC against S. mutans and E. coli were at 0.625 mg/mL and 1.25 mg/mL, respectively. Whereas the MIC value of AgNP- SC against P. aeruginosa was at 2.5 mg/mL. MBC values of AgNP-SC against E. coli, P. aerugino-sa and S. mutans were at 1.25, 2.5 mg/mL respectively. Results are concentration-dependent, with higher concentra-tion demonstrating better inhibition property. Conclusion: It can be concluded that AgNP-SC possesses bactericidal properties against S. mutans, E. coli and P. aeruginosa.
    Matched MeSH terms: Streptococcus mutans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links