Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Shirako Y, Yamaguchi Y
    J Gen Virol, 2000 May;81(Pt 5):1353-60.
    PMID: 10769079
    Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3' poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3' terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  2. Shalayel MH, Al-Mazaideh GM, Aladaileh SH, Al-Swailmi FK, Al-Thiabat MG
    Pak J Pharm Sci, 2020 Sep;33(5):2179-2186.
    PMID: 33824127
    Novel coronavirus disease (COVID-19) has become a pandemic threat to public health. Vaccines and targeted therapeutics to prevent infections and stop virus proliferation are currently lacking. Endoribonuclease Nsp15 plays a vital role in the life cycle, including replication and transcription as well as virulence of the virus. Here, we investigated Vitamin D for its in silico potential inhibition of the binding sites of SARS-CoV-2 endoribonuclease Nsp15. In this study, we selected Remdesivir, Chloroquine, Hydroxychloroquine and Vitamin D to study the potential binding affinity with the putative binding sites of endoribonuclease Nsp15 of COVID-19. The docking study was applied to rationalize the possible interactions of the target compounds with the active site of endoribonuclease Nsp 15. Among the results, Vitamin D was found to have the highest potency with strongest interaction in terms of LBE, lowest RMSD, and lowest inhibition intensity Ki than the other standard compounds. The investigation results of endoribonuclease Nsp15 on the PrankWeb server showed that there are three prospective binding sites with the ligands. The singularity of Vitamin D interaction with the three pockets, particularly in the second pocket, may write down Vitamin D as a potential inhibitor of COVID-19 Nsp15 endoribonuclease binding sites and favour addition of Vitamin D in the treatment plan for COVID-19 alone or in combination with the other used drugs in this purpose, which deserves exploration in further in vitro and in vivo studies.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  3. Shafee N, AbuBakar S
    J Gen Virol, 2003 Aug;84(Pt 8):2191-2195.
    PMID: 12867651 DOI: 10.1099/vir.0.19022-0
    Apoptosis was detected in Vero cell cultures expressing transfected dengue virus type 2 (DENV-2) genes. Approximately 17.5 and 51.5 % of cells expressing NS3 serine protease and NS2B-NS3(185) serine protease precursor protein [NS2B-NS3(185)(pro)] genes, respectively, were apoptotic. The percentage of apoptotic cells was significantly higher in cell cultures expressing NS2B-NS3(185)(pro). NS2B-NS3(185)(pro) was detected as NS2B-NS3(185)(pro)-EGFP fusion protein in cytoplasmic vesicular structures in the apoptotic cells. Site-directed mutagenesis which replaced His(51) with Ala within the protease catalytic triad significantly reduced the ability of the expressed NS3 and NS2B-NS3(185)(pro) to induce apoptosis. Results from the present study showed that DENV-2-encoded NS3 serine protease induces apoptosis, which is enhanced in cells expressing its precursor, NS2B-NS3(185)(pro). These findings suggest the importance of NS2B as a cofactor to NS3 protease-induced apoptosis.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*; Viral Nonstructural Proteins/chemistry
  4. Seyedi SS, Shukri M, Hassandarvish P, Oo A, Shankar EM, Abubakar S, et al.
    Sci Rep, 2016 Apr 13;6:24027.
    PMID: 27071308 DOI: 10.1038/srep24027
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism; Viral Nonstructural Proteins/chemistry*
  5. Scaramozzino N, Crance JM, Drouet C, Roebuck JP, Drouet E, Jouan A, et al.
    Biochem Biophys Res Commun, 2002 May 31;294(1):16-22.
    PMID: 12054734
    Langat (LGT) virus, initially isolated in 1956 from ticks in Malaysia, is a naturally occurring nonpathogenic virus with a very close antigenicity to the highly pathogenic tick-borne encephalitis (TBE) Western subtype virus and TBE Far Eastern subtype virus. NS3, the second largest viral protein of LGT virus, is highly conserved among flaviviruses and contains a characteristic protease moiety (NS3 pro). NS3 pro represents an attractive target for anti-protease molecules against TBE virus. We report herein a purification method specially designed for NS3 pro of LGT using a strategy for proper refolding coupled with the enzymatic characterisation of the protein. Different p-nitroanilide substrates, defined on canonic sequences for their susceptibility to Ser-protease, were applied to the proteolytic assays of the protein. The highest values were obtained from substrates containing an Arg or Lys (amino acid) residue at the P1 position. This purification method will facilitate the future development of reliable testing procedures for anti-proteases directed to NS3 proteins.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  6. Sam JE, Gee TS, Nasser AW
    J Neurosci Rural Pract, 2016 7 2;7(3):423-34.
    PMID: 27365962 DOI: 10.4103/0976-3147.182777
    INTRODUCTION: Dengue fever is a global pandemic threat with increasing incidence. To date, there are no cures and the effectiveness of dengue vaccines is still uncertain. World Heath Organization introduced expanded dengue syndrome to include unusual presentations of dengue fever including severe neurologic complications. One of the deadly complications is intracranial hemorrhage (ICH).

    METHODOLOGY: We collected data of patients with ICH diagnosed via a plain computed tomography of the brain (CT brain) with thrombocytopenia and positive Dengue virus type 1 nonstructural protein (NS1) antigen test or positive dengue serology IgM from January 2014 till June 2015 at our center. Nine patients were included and all 20 other remaining patients reported in literature so far are discussed.

    DISCUSSION: We found that all patients in our center requiring neurosurgical intervention died. Another interesting observation is that detection of Dengue IgG usually meant more severe ICH and poorer outcomes. From our series, platelet levels did not seem to influence the outcome.

    CONCLUSION: We recommend that for early detection of ICH, Dengue IgG should be routinely screened and a high index of suspicion be maintained. Future research should be focused on determining predictors of ICH in patients with dengue fever so that preventive steps can be taken as mortality is high and no treatment seems beneficial at the moment once severe ICH occurs.

    Matched MeSH terms: Viral Nonstructural Proteins
  7. Sam JE, Gee TS, Wahab NA
    Asian J Neurosurg, 2018 3 2;13(1):56-58.
    PMID: 29492121 DOI: 10.4103/1793-5482.185056
    Dengue fever has been a major cause of morbidity and mortality in subtropical and tropical countries. We report a rare case of severe dengue with spontaneous intracranial hemorrhage. A search of literature through PubMed revealed that the largest series analyzed so far only included five cases. A 47-year-old man presented with 7 days history of fever, headache, myalgia, and vomiting with hematemesis. On the day of presentation, he had reduced consciousness and an episode of generalized tonic-clonic seizure. His Glasgow Coma Scale was E1V1M3 with anisocoria. Postresuscitation computed tomography of the brain revealed a right subdural and left thalamic hemorrhage. His blood investigations revealed thrombocytopenia, dengue virus type 1 nonstructural protein antigen test was positive, dengue IgM negative, and dengue IgG positive. A right decompressive craniectomy was done. Unfortunately, the patient died soon after. Spontaneous intracranial hemorrhage in patients with dengue fever is an uncommon entity but usually carry a grave prognosis. To date, there has been no clear management guideline for such cases, as both operative and nonoperative approaches have their own inherent risks.
    Matched MeSH terms: Viral Nonstructural Proteins
  8. Sakhor W, Teoh TC, Yusof R, Lim SK, Razif MFM
    Trop Biomed, 2020 Sep 01;37(3):609-625.
    PMID: 33612776 DOI: 10.47665/tb.37.3.609
    The hepatitis C virus (HCV) consists of eight genotypes and 90 subtypes, with genotype (GT) 3 being the second most common globally and is linked to higher incidences of steatosis and rapid development of fibrosis and cirrhosis. The NS3/4A serine protease, a heterodimer complex of two HCV non-structural proteins, is an effective target for pharmaceutical intervention due to its essential roles in processing HCV polyproteins and inhibiting innate immunity. This study combines structure-based virtual screening (SBVS) of predefined compound libraries, pharmacokinetic prediction (ADME/T) and in vitro evaluation to identify potential low molecular weight (<500 Dalton) inhibitors of the NS3/4A serine protease (GT3). In silico screening of ZINC and PubChem libraries yielded five selected compounds as potential candidates. Dose-dependent inhibition of the NS3/4A serine protease and HCV replication in HuH-7.5 cells revealed that compound A (PubChem ID No. 16672637) exhibited inhibition towards HCV GT3 with an IC50 of 106.7µM and EC50 of 25.8µM, respectively. Thus, compound A may be developed as a potent, low molecular weight drug against the HCV NS3/4A serine protease of GT3.
    Matched MeSH terms: Viral Nonstructural Proteins
  9. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch Virol, 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  10. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors; Viral Nonstructural Proteins/metabolism
  11. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  12. Rothan HA, Buckle MJ, Ammar YA, Mohammadjavad P, Shatrah O, Noorsaadah AR, et al.
    Trop Biomed, 2013 Dec;30(4):681-90.
    PMID: 24522138
    Various clinical symptoms are caused by dengue virus ranging from mild fever to severe hemorrhagic fever while there is no successful anti-dengue therapeutics available. Among different strategies towards identifying and developing anti-dengue therapeutics, testing anti-dengue properties of known drugs could represent an efficient strategy for which information of its medical approval, toxicity and side effects is readily available. In this study, we evaluated the antiviral activity of some medical compounds towards dengue NS2B-NS3 protease (DENV2 NS2B-NS3pro) as a target to inhibit dengue virus replication. Mefenamic acid, a non-steroid anti inflammatory drug and doxycycline, a derivative antibiotic of tetracycline both showed significant inhibition potential against DENV2 NS2B-NS3pro Ki values 32 ± 2 μM and 55 ± 5 μM respectively. The effective cytotoxic concentrations of 50% (CC50) against Vero cells were evaluated for mefenamic acid (150 ± 5 μM) and doxycycline (125 ± 4 μM). Concentrations lower than CC50 were used to test the inhibition potential of these compounds against DENV2 replication in Vero cells. The results showed significant reduction in viral load after applying mefenamic acid and doxycyline in concentration dependent manner. Mefenamic acid reduced viral RNA at EC50 of 32 ± 4 μM whilst doxycycline EC50 was 40 ± 3 μM. Mefenamic acid showed higher selectivity against dengue virus replication in vitro compared to doxycycline. These findings underline the need for further experimental and clinical studies on these drugs utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  13. Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R
    PLoS One, 2014;9(4):e94561.
    PMID: 24722532 DOI: 10.1371/journal.pone.0094561
    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors; Viral Nonstructural Proteins/metabolism
  14. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R
    J Biomed Biotechnol, 2012;2012:251482.
    PMID: 23093838 DOI: 10.1155/2012/251482
    Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC(50) of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P < 0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P < 0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  15. Pritchard LI, Sendow I, Lunt R, Hassan SH, Kattenbelt J, Gould AR, et al.
    Virus Res, 2004 May;101(2):193-201.
    PMID: 15041187
    Bluetongue viruses (BTV) were isolated from sentinel cattle in Malaysia and at two sites in Indonesia. We identified eight serotypes some of which appeared to have a wide distribution throughout this region, while others were only isolated in Malaysia or Australia. Nearly half of the 24 known BTV serotypes have now been identified in Asia. Further, we investigated the genetic diversity of their RNA segments 3 and 10. Using partial nucleotide sequences of the RNA segment 3 (540 bp) which codes for the conserved core protein (VP3), the BTV isolates were found to be unique to the previously defined Australasian topotype and could be further subdivided into four distinct clades or genotypes. Certain of these genotypes appeared to be geographically restricted while others were distributed widely throughout the region. Similarly, the complete nucleotide sequences of the RNA segment 10 (822 bp), coding for the non-structural protein (NS3/3A), were also conserved and grouped into the five genotypes; the BTV isolates could be grouped into three Asian genotypes and two Nth American/Sth African genotypes.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/chemistry
  16. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, et al.
    Molecules, 2021 May 23;26(11).
    PMID: 34071102 DOI: 10.3390/molecules26113118
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  17. Othman R, Wahab HA, Yusof R, Rahman NA
    In Silico Biol. (Gedrukt), 2007;7(2):215-24.
    PMID: 17688447
    Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.
    Matched MeSH terms: Viral Nonstructural Proteins/chemistry*
  18. Osman O, Fong MY, Devi S
    PMID: 18567445
    A preliminary study of dengue infection in Brunei between 2005 and 2006 showed that dengue 2 was the predominant serotype. A total of five DEN-2 isolates were isolated and maintained in the mosquito cell-line, albopictus C6/36. The sequence spanning the envelope and non-structural protein 1 (E/NS1) junction (positions 2311 to 2550) of the isolates were determined and analysed at the amino acid and nucleotide levels. Alignment of the 240 nucleotide sequences among the five isolates showed changes occurring at 7 positions (2.9%) of the region. All but one nucleotide substitution (position 2319, amino acid 742 V --> F) were found at the 3rd position of the codons and were silent mutations. Amino acid homology ranged from 98% to 100%. Sequence divergence of the Brunei isolates varied from 5% to 6.6% compared with dengue-2 prototype New Guinea C strain. Comparison of the Brunei DEN-2 isolates with sixty-five other strains placed them in a cluster containing Indonesian strains isolated in 1973, 1978 and 2004 and Malaysian strains isolated in 1996, 1998 and 1999 in genotype group IV.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  19. Norazharuddin H, Lai NS
    Malays J Med Sci, 2018 Sep;25(5):6-15.
    PMID: 30914859 DOI: 10.21315/mjms2018.25.5.2
    Dengue is a neglected disease caused by the infection of dengue virus which is transmitted by Aedes mosquitoes and to some, it could be fatal. Regardless of the enormous work devoted to research for the treatment of dengue, to this day there is no cure, and treatment is solely limited to supportive care by treating the symptoms. The inhibition of the viral RNA non-structural enzymes has been the most popular approach amongst the strategies applied to the search and development of dengue antivirals. This review is a compact digest of what is already known of the roles and the prospects of the dengue virus non-structural proteins NS1, NS2BNS3, NS4A, NS4B and NS5 as the targets for antiviral studies including the recent progress that has been published regarding their roles.
    Matched MeSH terms: Viral Nonstructural Proteins
  20. Ngwe Tun MM, Muthugala R, Nabeshima T, Soe AM, Dumre SP, Rajamanthri L, et al.
    PLoS One, 2020;15(6):e0234508.
    PMID: 32555732 DOI: 10.1371/journal.pone.0234508
    Dengue virus (DENV) infection remains a major public health concern in many parts of the world, including Southeast Asia and the Americas. Sri Lanka experienced its largest dengue outbreak in 2017. Neurological symptoms associated with DENV infection have increasingly been reported in both children and adults. Here, we characterize DENV type 2 (DENV-2) strains, which were isolated from cerebrospinal fluid (CSF) and/or serum of patients with dengue encephalitis. Acute serum and CSF samples from each patient were subjected to dengue-specific non-structural protein 1 (NS1) antigen test, IgM and IgG enzyme-linked immunosorbent assay (ELISA), virus isolation, conventional and real-time polymerase chain reaction (PCR), and next-generation sequencing (NGS). Among the 5 dengue encephalitis patients examined, 4 recovered and 1 died. DENV-2 strains were isolated from serum and/or CSF samples of 3 patients. The highest viral genome levels were detected in the CSF and serum of the patient who succumbed to the illness. A phylogenetic tree revealed that the DENV-2 isolates belonged to a new clade of cosmopolitan genotype and were genetically close to strains identified in China, South Korea, Singapore, Malaysia, Thailand, and the Philippines. According to the NGS analysis, greater frequencies of nonsynonymous and synonymous mutations per gene were identified in the nonstructural genes. The full genomes of serum- and CSF-derived DENV-2 from the same patient shared 99.7% similarity, indicating that the virus spread across the blood-brain barrier. This is the first report to describe neurotropic DENV-2 using whole-genome analysis and to provide the clinical, immunological, and virological characteristics of dengue encephalitis patients during a severe dengue outbreak in Sri Lanka in 2017.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links