Displaying publications 21 - 40 of 363 in total

Abstract:
Sort:
  1. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;46(9):185-92.
    PMID: 12448468
    A significant breakthrough and progress have been made in the study of the kinetics of microbial transformation in sewers under aerobic and under changing aerobic/anaerobic conditions. Fundamental knowledge on anoxic kinetics of wastewater is still lacking, so it is not now possible to apply an integrated approach to municipal wastewater treatment incorporating sewer networks as a bio-chemical reactor. This paper presents the results of studies on determining half saturation constants for nitrate, KNO3, and nitrite, KNO2, in raw wastewater. The average values of KNO3 and KNO2, determined from experiments conducted on 7 different wastewater samples were found to be 0.76 gNO3-N/m3 and 0.33 gNO2-N/m3 respectively.
    Matched MeSH terms: Waste Disposal, Fluid*
  2. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Waste Disposal, Fluid*
  3. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Alam MZ, Fakhru'l-Razi A
    PMID: 12090282
    Effects of agitation and aeration rate on microbial treatment of domestic wastewater sludge were investigated in a batch fermenter using mixed culture of Penicillium corylophilum and Aspergillus niger. It was found that liquid state bioconversion (LSB) of wastewater sludge was highly influenced by the effects of agitation and aeration. The maximum production of sludge cake and reduction of organic substances in treated sludge were recorded at 150-200 rpm of agitation speed and 0.5 vvm of aeration rate after 72 h of treatment. No effective results were observed at higher rate of agitation (300 rpm) and aeration (1.5 vvm) as compared to optimum values. The results showed that the minimum level of air saturation (pO2) was adequate to maintain the bioconversion process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Wong KK, Lee CK, Low KS, Haron MJ
    Chemosphere, 2003 Jan;50(1):23-8.
    PMID: 12656225
    A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Lim PE, Tay MG, Mak KY, Mohamed N
    Sci Total Environ, 2003 Jan 01;301(1-3):13-21.
    PMID: 12493181
    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn
    Matched MeSH terms: Waste Disposal, Fluid
  7. Alam MZ, Fakhru'l-Razi A
    Water Res, 2003 Mar;37(5):1118-24.
    PMID: 12553987
    A study was conducted to evaluate the settleability and dewaterability of fungal treated and untreated sludge using liquid state bioconversion process. The fungal mixed culture of Aspergillus niger and Penicillium corylophilum was used for fungal pretreatment of wastewater sludge. The fungal strains immobilized/entrapped on sludge particles with the formation of pellets and enhanced the separation process. The results presented in this study showed that the sludge particles (pellets) size of 2-5mm of diameter were formed with the microbial treatment of sludge after 2 days of fermentation that contained maximum 33.7% of total particles with 3-3.5mm of diameter. The settling rate (measured as total suspended solids (TSS) concentration, 130 mg/l) was faster in treated sludge than untreated sludge (TSS concentration, 440 mg/l) after 1 min of settling time. In 1 min of settling operation, 86.45% of TSS was settled in treated sludge while 4.35% of TSS settled in raw sludge. Lower turbidity was observed in treated sludge as compared to untreated sludge. The results to specific resistance to filtration (SRF) revealed that the fungal inoculum had significant potentiality to reduce SRF by 99.8% and 98.7% for 1% w/w and 4% w/w of TSS sludge, respectively. The optimum fermentation period recorded was 3 days for 1% w/w sludge and 6 days for 4% w/w sludge, respectively, for dewaterability test.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Alam MZ, Fakhru'l-Razi A, Molla AH
    Water Res, 2003 Sep;37(15):3569-78.
    PMID: 12867323
    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Ong SA, Lim PE, Seng CE
    J Hazard Mater, 2003 Oct 31;103(3):263-77.
    PMID: 14573344
    Wastewater treatment systems employing simultaneous adsorption and biodegradation processes have proven to be effective in treating toxic pollutants present in industrial wastewater. The objective of this study is to evaluate the effect of Cu(II) and the efficacy of the powdered activated carbon (PAC) and activated rice husk (ARH) in reducing the toxic effect of Cu(II) on the activated sludge microorganisms. The ARH was prepared by treatment with concentrated nitric acid for 15 h at 60-65 degrees C. The sequencing batch reactor (SBR) systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the ratio of 0.5:3.5:1:0.75:0.25 for a cycle time of 6 h. The Cu(II) and COD removal efficiency were 90 and 85%, respectively, in the SBR system containing 10 mg/l Cu(II) with the addition of 143 mg/l PAC or 1.0 g PAC per cycle. In the case of 715 mg/l ARH or 5.0 g ARH per cycle addition, the Cu(II) and COD removal efficiency were 85 and 92%, respectively. ARH can be used as an alternate adsorbent to PAC in the simultaneous adsorption and biodegradation wastewater treatment process for the removal of Cu(II). The specific oxygen uptake rate (SOUR) and kinetic studies show that the addition of PAC and ARH reduce the toxic effect of Cu(II) on the activated sludge microorganisms.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Lee KM, Lim PE
    Water Sci Technol, 2003;47(10):41-7.
    PMID: 12862215
    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Al-Shididi S, Henze M, Ujang Z
    Water Sci Technol, 2003;48(11-12):327-35.
    PMID: 14753553
    The objective of this study was to assess the feasibility of the Sequencing Batch Reactor (SBR) system for implementation in Malaysia. Theoretical, field, laboratory investigations, and modelling simulations have been carried out. The results of the study indicated that the SBR system was robust, relatively cost-effective, and efficient under Malaysian conditions. However, the SBR system requires highly skilled operators and continuous monitoring. This paper also attempted to identify operating conditions for the SBR system, which optimise both the removal efficiencies and the removal rates. The removal efficiencies could reach 90-96% for COD, up to 92% for TN, and 95% for SS. An approach to estimate a full operational cycle time, to estimate the de-sludging rate, and to control the biomass in the sludge has also been developed. About 4 hours react time was obtained, as 2.25 hours of nitrification with aerated slow fill and 1.75 hour of denitrification with HAc addition as an additional carbon source. Inefficient settling was one of the problems that affect the SBR effluent quality. The settling time was one hour for achieving Standard B (effluent quality) and 2 hours for Standard A.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Lim PE, Mak KY, Mohamed N, Noor AM
    Water Sci Technol, 2003;48(5):307-13.
    PMID: 14621178
    This study was conducted to: (1) evaluate the performance of constructed wetlands in removing Zn, Pb and Cd, respectively, and Zn, Pb, Cd and Cu in combination and (2) investigate the speciation patterns of the dissolved metals differentiated according to their detectability by anodic stripping voltammetry (ASV) and their lability towards Chelex resin along the treatment path of metal-containing wastewater in horizontal subsurface-flow constructed wetlands. Four laboratory scale wetland units planted with cattails (Typha latifolia) were operated outdoors for six months. Three of the units were, respectively, fed with primary-treated domestic wastewater spiked with Zn(II), Pb(II) and Cd(II) whilst the fourth was spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II). The results demonstrate that a metal removal efficiency of over 99% was achievable for wetland units treating the metals singly or in combination provided the sorption capacity of the media was not exceeded. When treating the metals in combination, an antagonistic effect, more significantly for Pb and Cd, on the sorptive metal uptake by media was observed. Based on the metal speciation patterns, the wetland system seemed to be capable of maintaining the ASV-labile metal species at relatively low level (< 10%) before media exhaustion.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Alam MZ
    Med J Malaysia, 2004 May;59 Suppl B:216-7.
    PMID: 15468895
    Studies on the removal of phenol from aqueous solutions by adsorption on sewage treatment plant biosolids (BS) as low-cost adsorbent were carried out with an aim to obtain information on treating phenol-containing wastewater from different industries. A series of experiments were undertaken in a batch adsorption technique to access the effect of the process variables i.e. initial phenol concentration, contact time, initial pH and adsorbent dose. The results showed that the adsorption capacity of BS in aqueous solution increased with the decrease in initial concentration and pH, and increase in contact time and dose of adsorbent. The experimental results were fitted by Langmuir and Freundlich isotherms to describe the biosorption processes.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Ali MF, Heng LY, Ratnam W, Nais J, Ripin R
    Bull Environ Contam Toxicol, 2004 Sep;73(3):535-42.
    PMID: 15386176
    Matched MeSH terms: Waste Disposal, Fluid
  15. Hossain Molla A, Fakhru'l-Razi A, Zahangir Alam M
    Water Res, 2004 Nov;38(19):4143-52.
    PMID: 15491662
    Natural and environmental-friendly disposal of wastewater sludge is a great concern. Recently, biological treatment has played prominent roles in bioremediation of complex hydrocarbon- rich contaminants. Composting is quite an old biological-based process that is being practiced but it could not create a great impact in the minds of concerned researchers. The present study was conducted to evaluate the feasibility of the solid-state bioconversion (SSB) processes in the biodegradation of wastewater sludge by exploiting this promising technique to rejuvenate the conventional process. The Indah Water Konsortium (IWK) domestic wastewater treatment plant (DWTP) sludge was considered for evaluation of SSB by monitoring the microbial growth and its subsequent roles in biodegradation under two conditions: (i) flask (F) and (ii) composting bin (CB) cultures. Sterile and semi-sterile environments were allowed in the F and the CB, respectively, using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 (T/P) and T. harzianum with Mucor hiemalis (T/M) and two bulking materials, sawdust (SD) and rice straw (RS). The significant growth and multiplication of both the mixed fungal cultures were reflected in soluble protein, glucosamine and color intensity measurement of the water extract. The color intensity and pH of the water extract significantly increased and supported the higher growth of microbes and bioconversion. The most encouraging results of microbial growth and subsequent bioconversion were exhibited in the RS than the SD. A comparatively higher decrease of organic matter (OM) % and C/N ratio were attained in the CB than the F, which implied a higher bioconversion. But the measurement of soluble protein, glucosamine and color intensity exhibited higher values in the F than the CB. The final pH drop was higher in the CB than the F, which implied that a higher nitrification occurred in the CB associated with a higher release of H+ ions. Both the mixed cultures performed almost equal roles in all cases except the changes in moisture content.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Alam MZ, Fakhru'l-Razi A
    PMID: 15508283
    A study on liquid state bioconversion of sewage treatment plant (STP) sludge was assisted to evaluate the performance of batch fermenter compared to shake flask in a laboratory. Bioconversion of STP sludge was highly influenced by the mixed fungal culture of Penicillium corylophilum and Aspergillus niger after 4 days of treatment. The results showed that about 24.9 g kg(-1) dry sludge cake (DSC) was produced with enrichment of fungal biomass protein in fermenter while 20.1 g kg(-1) in shake flask after 4 days of fungal treatment. The effective biodegradation of STP sludge was recorded in both fermenter and shake flask experiment compared to control (uninnoculated sample). The results presented in this study revealed that the overall performance of fermenter in terms of sludge cake (biosolids) accumulation and biodegradation of STP sludge was higher than the shake flask.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Lee KK, Kassim AM, Lee HK
    Water Sci Technol, 2004;50(5):73-7.
    PMID: 15497832
    White-rot fungi, namely Coriolus versicolor and Schizophyllum commune, were studied for the biodecolorization of textile dyeing effluent in shaker-flask experiments. The results showed that C. versicolor was able to achieve 68% color removal after 5 days of treatment while that of S. commune was 88% in 9 days. Both fungi achieved the above results in non-sterile condition with diammonium hydrogen phosphate as the nutrient supplement. On the other hand, the best COD removal of 80% was obtained with C. versicolor in 9 days in sterile effluent with yeast extract as nutrient supplement, while S. commune was able to remove 85% COD within 8 days in non-sterile textile effluent supplemented with diammonium hydrogen phosphate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Alam MZ, Fakhru'l-Razi A, Molla AH
    J Environ Sci (China), 2004;16(1):132-7.
    PMID: 14971468
    This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%-5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation (formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration (filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett Appl Microbiol, 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
    Matched MeSH terms: Waste Disposal, Fluid/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links