Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Ravanfar SA, Razak HA, Ismail Z, Monajemi H
    Sensors (Basel), 2015;15(9):22750-75.
    PMID: 26371005 DOI: 10.3390/s150922750
    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.
    Matched MeSH terms: Wavelet Analysis
  2. Asghar MA, Khan MJ, Rizwan M, Mehmood RM, Kim SH
    Sensors (Basel), 2020 Jul 05;20(13).
    PMID: 32635609 DOI: 10.3390/s20133765
    Emotional awareness perception is a largely growing field that allows for more natural interactions between people and machines. Electroencephalography (EEG) has emerged as a convenient way to measure and track a user's emotional state. The non-linear characteristic of the EEG signal produces a high-dimensional feature vector resulting in high computational cost. In this paper, characteristics of multiple neural networks are combined using Deep Feature Clustering (DFC) to select high-quality attributes as opposed to traditional feature selection methods. The DFC method shortens the training time on the network by omitting unusable attributes. First, Empirical Mode Decomposition (EMD) is applied as a series of frequencies to decompose the raw EEG signal. The spatiotemporal component of the decomposed EEG signal is expressed as a two-dimensional spectrogram before the feature extraction process using Analytic Wavelet Transform (AWT). Four pre-trained Deep Neural Networks (DNN) are used to extract deep features. Dimensional reduction and feature selection are achieved utilising the differential entropy-based EEG channel selection and the DFC technique, which calculates a range of vocabularies using k-means clustering. The histogram characteristic is then determined from a series of visual vocabulary items. The classification performance of the SEED, DEAP and MAHNOB datasets combined with the capabilities of DFC show that the proposed method improves the performance of emotion recognition in short processing time and is more competitive than the latest emotion recognition methods.
    Matched MeSH terms: Wavelet Analysis
  3. Syed Ahmad SM, Loo LY, Wan Adnan WA, Md Anwar R
    J Forensic Sci, 2017 Mar;62(2):374-381.
    PMID: 28000207 DOI: 10.1111/1556-4029.13303
    This study presents a wavelet analysis of resultant velocity features belonging to genuine and forged groups of signature sample. Signatures of individuals were initially classified based on visual human perceptions of their relative sizes, complexities, and legibilities of the genuine counterparts. Then, the resultant velocity was extracted and modeled through wavelet analysis from each sample. The wavelet signal was decomposed into several layers based on maximum overlap discrete wavelet transform (MODWT). Next, the zero crossing rate features were calculated from all the high wavelet sub-bands. A total of seven hypotheses were then tested using a two-way ANOVA testing methodology. Of these, four hypotheses were conducted to test for significance differences between distributions. In addition, three hypotheses were run to provide test for interaction between two factors of signature authentication versus perceived classification. The results demonstrated that both feature distributions belonging to genuine and forged groups of samples cannot be distinguished by themselves. Instead, they were significantly different under the influence of two other inherent factors, namely perceived size and legibility. Such new findings are useful information particularly in providing bases for forensic justifications in establishing the authenticity of handwritten signature specimens.
    Matched MeSH terms: Wavelet Analysis
  4. Ha J, Tan PP, Goh KL
    PLoS One, 2018;13(5):e0197785.
    PMID: 29782534 DOI: 10.1371/journal.pone.0197785
    The energy-growth nexus has important policy implications for economic development. The results from many past studies that investigated the causality direction of this nexus can lead to misleading policy guidance. Using data on China from 1953 to 2013, this study shows that an application of causality test on the time series of energy consumption and national output has masked a lot of information. The Toda-Yamamoto test with bootstrapped critical values and the newly proposed non-linear causality test reveal no causal relationship. However, a further application of these tests using series in different time-frequency domain obtained from wavelet decomposition indicates that while energy consumption Granger causes economic growth in the short run, the reverse is true in the medium term. A bidirectional causal relationship is found for the long run. This approach has proven to be superior in unveiling information on the energy-growth nexus that are useful for policy planning over different time horizons.
    Matched MeSH terms: Wavelet Analysis
  5. Farah Nazlia Che Kassim, Muthusamy, Hariharan, Vijean, Vikneswaran, Zulkapli Abdullah, Rokiah Abdullah
    MyJurnal
    Voice pathology analysis has been one of the useful tools in the diagnosis of the pathological voice, as the method is non-invasive, inexpensive, and can reduce the time required for the analysis. This paper investigates feature extraction based on the Dual-Tree Complex Wavelet Packet Transform (DT-CWPT) using energy and entropy measures tested with two classifiers, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and Saarbruecken Voice Database (SVD) were used. Five datasets of voice samples were used from these databases, including normal and abnormal samples, Cysts, Vocal Nodules, Polyp, and Paralysis vocal fold. To the best of the authors’ knowledge, very few studies were done on multiclass classifications using specific pathology database. File-based and frame-based investigation for two-class and multiclass were considered. In the two-class analysis using the DT-CWPT with entropies, the classification accuracy of 100% and 99.94% was achieved for MEEI and SVD database respectively. Meanwhile, the classification accuracy for multiclass analysis comprised of 99.48% for the MEEI database and 99.65% for SVD database. The experimental results using the proposed features provided promising accuracy to detect the presence of diseases in vocal fold.
    Matched MeSH terms: Wavelet Analysis
  6. Asghar MA, Khan MJ, Rizwan M, Shorfuzzaman M, Mehmood RM
    Multimed Syst, 2021 Apr 21.
    PMID: 33897112 DOI: 10.1007/s00530-021-00782-w
    Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient's emotions and in monitoring stress levels in real-time. Due to the noisy and non-linear nature of the EEG signal, it is still difficult to understand emotions and can generate large feature vectors. In this article, we have proposed an efficient spatial feature extraction and feature selection method with a short processing time. The raw EEG signal is first divided into a smaller set of eigenmode functions called (IMF) using the empirical model-based decomposition proposed in our work, known as intensive multivariate empirical mode decomposition (iMEMD). The Spatio-temporal analysis is performed with Complex Continuous Wavelet Transform (CCWT) to collect all the information in the time and frequency domains. The multiple model extraction method uses three deep neural networks (DNNs) to extract features and dissect them together to have a combined feature vector. To overcome the computational curse, we propose a method of differential entropy and mutual information, which further reduces feature size by selecting high-quality features and pooling the k-means results to produce less dimensional qualitative feature vectors. The system seems complex, but once the network is trained with this model, real-time application testing and validation with good classification performance is fast. The proposed method for selecting attributes for benchmarking is validated with two publicly available data sets, SEED, and DEAP. This method is less expensive to calculate than more modern sentiment recognition methods, provides real-time sentiment analysis, and offers good classification accuracy.
    Matched MeSH terms: Wavelet Analysis
  7. Naidu K, Ali MS, Abu Bakar AH, Tan CK, Arof H, Mokhlis H
    PLoS One, 2020;15(1):e0227494.
    PMID: 31999711 DOI: 10.1371/journal.pone.0227494
    This paper proposes an approach to accurately estimate the impedance value of a high impedance fault (HIF) and the distance from its fault location for a distribution system. Based on the three-phase voltage and current waveforms which are monitored through a single measurement in the network, several features are extracted using discrete wavelet transform (DWT). The extracted features are then fed into the optimized artificial neural network (ANN) to estimate the HIF impedance and its distance. The particle swarm optimization (PSO) technique is employed to optimize the parameters of the ANN to enhance the performance of fault impedance and distance estimations. Based on the simulation results, the proposed method records encouraging results compared to other methods of similar complexity for both HIF impedance values and estimated distances.
    Matched MeSH terms: Wavelet Analysis
  8. Shivaraja TR, Remli R, Kamal N, Wan Zaidi WA, Chellappan K
    Sensors (Basel), 2023 Mar 31;23(7).
    PMID: 37050713 DOI: 10.3390/s23073654
    Ambulatory EEGs began emerging in the healthcare industry over the years, setting a new norm for long-term monitoring services. The present devices in the market are neither meant for remote monitoring due to their technical complexity nor for meeting clinical setting needs in epilepsy patient monitoring. In this paper, we propose an ambulatory EEG device, OptiEEG, that has low setup complexity, for the remote EEG monitoring of epilepsy patients. OptiEEG's signal quality was compared with a gold standard clinical device, Natus. The experiment between OptiEEG and Natus included three different tests: eye open/close (EOC); hyperventilation (HV); and photic stimulation (PS). Statistical and wavelet analysis of retrieved data were presented when evaluating the performance of OptiEEG. The SNR and PSNR of OptiEEG were slightly lower than Natus, but within an acceptable bound. The standard deviations of MSE for both devices were almost in a similar range for the three tests. The frequency band energy analysis is consistent between the two devices. A rhythmic slowdown of theta and delta was observed in HV, whereas photic driving was observed during PS in both devices. The results validated the performance of OptiEEG as an acceptable EEG device for remote monitoring away from clinical environments.
    Matched MeSH terms: Wavelet Analysis
  9. Yu K, Feng L, Chen Y, Wu M, Zhang Y, Zhu P, et al.
    Comput Biol Med, 2024 Feb;169:107835.
    PMID: 38096762 DOI: 10.1016/j.compbiomed.2023.107835
    Current wavelet thresholding methods for cardiogram signals captured by flexible wearable sensors face a challenge in achieving both accurate thresholding and real-time signal denoising. This paper proposes a real-time accurate thresholding method based on signal estimation, specifically the normalized ACF, as an alternative to traditional noise estimation without the need for parameter fine-tuning and extensive data training. This method is experimentally validated using a variety of electrocardiogram (ECG) signals from different databases, each containing specific types of noise such as additive white Gaussian (AWG) noise, baseline wander noise, electrode motion noise, and muscle artifact noise. Although this method only slightly outperforms other methods in removing AWG noise in ECG signals, it far outperforms conventional methods in removing other real noise. This is attributed to the method's ability to accurately distinguish not only AWG noise that is significantly different spectrum of the ECG signal, but also real noise with similar spectra. In contrast, the conventional methods are effective only for AWG noise. In additional, this method improves the denoising visualization of the measured ECG signals and can be used to optimize other parameters of other wavelet methods to enhancing the denoised periodic signals, thereby improving diagnostic accuracy.
    Matched MeSH terms: Wavelet Analysis
  10. Afshan S, Cheong CWH, Sharif A
    Environ Sci Pollut Res Int, 2023 Aug;30(38):88861-88875.
    PMID: 37440132 DOI: 10.1007/s11356-023-28660-0
    Energy is one of the prime factors in influencing the sustainable development of a country. Different energy sources play important roles in driving the income growth of different economic sectors such as industrial, agricultural, and services. Fossil fuels, however, have come under strong criticism for actively accelerating climate change. As such, it is imperative to investigate the contributions of various energy sources toward sustainable growth. With Malaysia as the test-bed, the present study analyzes the impact of energy prices on economic stability using the novel wavelet-based analysis. Specifically, the study analyzed the impact of crude oil, natural gas, and gasoline prices on the economic (brown) and green growth from 1995 to 2020. The results show that in continuous wavelet transform, the cone of influence of all five factors exhibits strong short-run variance and fluctuations from 2005 to 2013. However, the intensity of brown growth is more influential than green growth. Similarly, in wavelet coherence graphs, the downward right arrows indicate positively significant associations between crude oil prices, natural gas prices, and gasoline prices with brown and green growth. Additionally, wavelet-based Granger causality reveals a bidirectional causal relationship between all variables. The results thus strongly suggest that energy prices predominantly affect the economic (brown) and green growth progression of the Malaysian economy. The study concludes with some suggested implications to augment the country's sustainable growth.
    Matched MeSH terms: Wavelet Analysis
  11. May Z, Alam MK, Nayan NA, Rahman NAA, Mahmud MS
    PLoS One, 2021;16(12):e0261040.
    PMID: 34914761 DOI: 10.1371/journal.pone.0261040
    Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classifiers. Findings of our proposed machine learning approach confirm that it can be effectively utilized for corrosion detection and severity assessment in SHM applications.
    Matched MeSH terms: Wavelet Analysis*
  12. Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T, Yaacob S, et al.
    Comput Methods Programs Biomed, 2018 Mar;155:39-51.
    PMID: 29512503 DOI: 10.1016/j.cmpb.2017.11.021
    BACKGROUND AND OBJECTIVE: Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals.

    METHODS: Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well.

    RESULTS: Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%.

    CONCLUSION: The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals.

    Matched MeSH terms: Wavelet Analysis*
  13. Lim AC, Chong VC, Wong CS, Muniandy SV
    PeerJ, 2015;3:e1471.
    PMID: 26734507 DOI: 10.7717/peerj.1471
    Background. Syngnathid fishes produce three kinds of sounds, named click, growl and purr. These sounds are generated by different mechanisms to give a consistent signal pattern or signature which is believed to play a role in intraspecific and interspecific communication. Commonly known sounds are produced when the fish feeds (click, purr) or is under duress (growl). While there are more acoustic studies on seahorses, pipefishes have not received much attention. Here we document the differences in feeding click signals between three species of pipefishes and relate them to cranial morphology and kinesis, or the sound-producing mechanism. Methods. The feeding clicks of two species of freshwater pipefishes, Doryichthys martensii and Doryichthys deokhathoides and one species of estuarine pipefish, Syngnathoides biaculeatus, were recorded by a hydrophone in acoustic dampened tanks. The acoustic signals were analysed using time-scale distribution (or scalogram) based on wavelet transform. A detailed time-varying analysis of the spectral contents of the localized acoustic signal was obtained by jointly interpreting the oscillogram, scalogram and power spectrum. The heads of both Doryichthys species were prepared for microtomographical scans which were analysed using a 3D imaging software. Additionally, the cranial bones of all three species were examined using a clearing and double-staining method for histological studies. Results. The sound characteristics of the feeding click of the pipefish is species-specific, appearing to be dependent on three bones: the supraoccipital, 1st postcranial plate and 2nd postcranial plate. The sounds are generated when the head of the Dorichthyes pipefishes flexes backward during the feeding strike, as the supraoccipital slides backwards, striking and pushing the 1st postcranial plate against (and striking) the 2nd postcranial plate. In the Syngnathoides pipefish, in the absence of the 1st postcranial plate, the supraoccipital rubs against the 2nd postcranial plate twice as it is pulled backward and released on the return. Cranial morphology and kinesis produce acoustic signals consistent with the bone strikes that produce sharp energy spikes (discrete or merged), or stridulations between bones that produce repeated or multimodal sinusoidal waveforms. Discussion. The variable structure of the sound-producing mechanism explains the unique acoustic signatures of the three species of pipefish. The differences in cranial bone morphology, cranial kinesis and acoustic signatures among pipefishes (and seahorses) could be attributed to independent evolution within the Syngnathidae, which warrants further investigation.
    Matched MeSH terms: Wavelet Analysis
  14. Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T
    Comput Methods Programs Biomed, 2016 Apr;127:52-63.
    PMID: 27000289 DOI: 10.1016/j.cmpb.2015.12.024
    Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support vector machine and radial basis function method.
    Matched MeSH terms: Wavelet Analysis
  15. Acharya UR, Mookiah MR, Koh JE, Tan JH, Noronha K, Bhandary SV, et al.
    Comput Biol Med, 2016 06 01;73:131-40.
    PMID: 27107676 DOI: 10.1016/j.compbiomed.2016.04.009
    Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.
    Matched MeSH terms: Wavelet Analysis
  16. Mazaheri S, Sulaiman PS, Wirza R, Dimon MZ, Khalid F, Moosavi Tayebi R
    Comput Math Methods Med, 2015;2015:486532.
    PMID: 26089965 DOI: 10.1155/2015/486532
    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.
    Matched MeSH terms: Wavelet Analysis
  17. Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Bhandary SV, Rao AK, et al.
    Comput Biol Med, 2017 05 01;84:59-68.
    PMID: 28343061 DOI: 10.1016/j.compbiomed.2017.03.016
    The cause of diabetic macular edema (DME) is due to prolonged and uncontrolled diabetes mellitus (DM) which affects the vision of diabetic subjects. DME is graded based on the exudate location from the macula. It is clinically diagnosed using fundus images which is tedious and time-consuming. Regular eye screening and subsequent treatment may prevent the vision loss. Hence, in this work, a hybrid system based on Radon transform (RT), discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed for an automated detection of DME. The fundus images are subjected to RT to obtain sinograms and DWT is applied on these sinograms to extract wavelet coefficients (approximate, horizontal, vertical and diagonal). DCT is applied on approximate coefficients to obtain 2D-DCT coefficients. Further, these coefficients are converted into 1D vector by arranging the coefficients in zig-zag manner. This 1D signal is subjected to locality sensitive discriminant analysis (LSDA). Finally, various supervised classifiers are used to classify the three classes using significant features. Our proposed technique yielded a classification accuracy of 100% and 97.01% using two and seven significant features for private and public (MESSIDOR) databases respectively. Also, a maculopathy index is formulated with two significant parameters to discriminate the three groups distinctly using a single integer. Hence, our obtained results suggest that this system can be used as an eye screening tool for diabetic subjects for DME.
    Matched MeSH terms: Wavelet Analysis
  18. Jawed S, Amin HU, Malik AS, Faye I
    PMID: 31133829 DOI: 10.3389/fnbeh.2019.00086
    This study analyzes the learning styles of subjects based on their electroencephalo-graphy (EEG) signals. The goal is to identify how the EEG features of a visual learner differ from those of a non-visual learner. The idea is to measure the students' EEGs during the resting states (eyes open and eyes closed conditions) and when performing learning tasks. For this purpose, 34 healthy subjects are recruited. The subjects have no background knowledge of the animated learning content. The subjects are shown the animated learning content in a video format. The experiment consists of two sessions and each session comprises two parts: (1) Learning task: the subjects are shown the animated learning content for an 8-10 min duration. (2) Memory retrieval task The EEG signals are measured during the leaning task and memory retrieval task in two sessions. The retention time for the first session was 30 min, and 2 months for the second session. The analysis is performed for the EEG measured during the memory retrieval tasks. The study characterizes and differentiates the visual learners from the non-visual learners considering the extracted EEG features, such as the power spectral density (PSD), power spectral entropy (PSE), and discrete wavelet transform (DWT). The PSD and DWT features are analyzed. The EEG PSD and DWT features are computed for the recorded EEG in the alpha and gamma frequency bands over 128 scalp sites. The alpha and gamma frequency band for frontal, occipital, and parietal regions are analyzed as these regions are activated during learning. The extracted PSD and DWT features are then reduced to 8 and 15 optimum features using principal component analysis (PCA). The optimum features are then used as an input to the k-nearest neighbor (k-NN) classifier using the Mahalanobis distance metric, with 10-fold cross validation and support vector machine (SVM) classifier using linear kernel, with 10-fold cross validation. The classification results showed 97% and 94% accuracies rate for the first session and 96% and 93% accuracies for the second session in the alpha and gamma bands for the visual learners and non-visual learners, respectively, for k-NN classifier for PSD features and 68% and 100% accuracies rate for first session and 100% accuracies rate for second session for DWT features using k-NN classifier for the second session in the alpha and gamma band. For PSD features 97% and 96% accuracies rate for the first session, 100% and 95% accuracies rate for second session using SVM classifier and 79% and 82% accuracy for first session and 56% and 74% accuracy for second session for DWT features using SVM classifier. The results showed that the PSDs in the alpha and gamma bands represent distinct and stable EEG signatures for visual learners and non-visual learners during the retrieval of the learned contents.
    Matched MeSH terms: Wavelet Analysis
  19. Sudarshan VK, Acharya UR, Oh SL, Adam M, Tan JH, Chua CK, et al.
    Comput Biol Med, 2017 04 01;83:48-58.
    PMID: 28231511 DOI: 10.1016/j.compbiomed.2017.01.019
    Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.
    Matched MeSH terms: Wavelet Analysis*
  20. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
    Matched MeSH terms: Wavelet Analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links