METHODS: Sixteen children with TBI (aged 11.63+/-1.89 years) and 22 TD controls (aged 11.41+/-2.24 years) participated in this case-control study. This study was conducted between May 2016 and March 2017. Each child performed static standing under 3 different conditions: single, concurrent motor, and concurrent cognitive task. Postural control performance measure includes sway area, anterior-posterior (AP) sway velocity, medio-lateral (ML) sway velocity, AP sway distance and ML sway distance as measured using the APDM Mobility Lab (Oregon, Portland). A repeated-measure analysis of variance was used to analyse the data.
RESULTS: We found that children with TBI showed significantly more deterioration in postural control performance than TD children (p<0.05). Both concurrent tasks (motor and cognitive) significantly decreased postural control performance in both groups with more pronounced changes in children with TBI than that of the TD controls.
CONCLUSION: The results demonstrated that, performing concurrent tasks (motor and cognitive) during upright standing resulted in deterioration of postural control performance. The existence of cognitive and balance impairment in children with TBI will possibly cause concurrent tasks to be more complex and demands greater attention compared to single task.
METHODS: This study analysed all traumatic brain injury cases for children ages 0-19 included in the 2010 NTrD report.
RESULTS: A total of 5,836 paediatric patients were admitted to emergency departments (ED) of reporting hospitals for trauma. Of these, 742 patients (12.7 %) suffered from brain injuries. Among those with brain injuries, the mortality rate was 11.9 and 71.2 % were aged between 15 and 19. Traffic accidents were the most common mode of injury (95.4 %). Out of the total for traffic accidents, 80.2 % of brain injuries were incurred in motorcycle accidents. Severity of injury was higher among males and patients who were transferred or referred to the reporting centres from other clinics. Glasgow Coma Scale (GCS) total score and type of admission were found to be statistically significant, χ (2) (5, N = 178) = 66.53, p brain injury for this one year period was 32 per 100,000 children while the incidence of significant (moderate to severe) brain injury was approximately 8 per 100,000 children.
CONCLUSIONS: This study provides an overview of traumatic brain injury rates among children within the most populous region of Malaysia. Most brain injuries occurred among older male children, with traffic, specifically motorcycle-related, accidents being the main mode of injury. These findings point to risk factors that could be targeted for future injury prevention programs.
METHODS: Patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS) or in minimally conscious state (MCS) were enrolled within 3 months from their brain injury in 12 specialized medical institutions. Demographic, anamnestic, clinical, and neurophysiologic data were collected at study entry. Patients were then followed up for assessing the primary outcome, that is, clinical diagnosis according to standardized criteria at 6 months postinjury.
RESULTS: We enrolled 147 patients (44 women; mean age 49.4 [95% confidence interval 46.1-52.6] years; VS/UWS 71, MCS 76; traumatic 55, vascular 56, anoxic 36; mean time postinjury 59.6 [55.4-63.6] days). The 6-month follow-up was complete for 143 patients (VS/UWS 70; MCS 73). With respect to study entry, the clinical diagnosis improved in 72 patients (VS/UWS 27; MCS 45). Younger age, shorter time postinjury, higher Coma Recovery Scale-Revised total score, and presence of EEG reactivity to eye opening at study entry predicted better outcome, whereas etiology, clinical diagnosis, Disability Rating Scale score, EEG background activity, acoustic reactivity, and P300 on event-related potentials were not associated with outcome.
CONCLUSIONS: Multimodal assessment could identify patients with higher likelihood of clinical improvement in order to help clinicians, families, and funding sources with various aspects of decision-making. This multicenter, international study aims to stimulate further research that drives international consensus regarding standardization of prognostic procedures for patients with DoC.
OBJECTIVE: To compare the ability of the prehospital GCS and GCS-M to predict 30-day mortality and severe disability in trauma patients.
DESIGN: We used the Pan-Asia Trauma Outcomes Study registry to enroll all trauma patients >18 years of age who presented to hospitals via emergency medical services from 1 January 2016 to November 30, 2018.
SETTINGS AND PARTICIPANTS: A total of 16,218 patients were included in the analysis of 30-day mortality and 11 653 patients in the analysis of functional outcomes.
OUTCOME MEASURES AND ANALYSIS: The primary outcome was 30-day mortality after injury, and the secondary outcome was severe disability at discharge defined as a Modified Rankin Scale (MRS) score ≥4. Areas under the receiver operating characteristic curve (AUROCs) were compared between GCS and GCS-M for these outcomes. Patients with and without traumatic brain injury (TBI) were analyzed separately. The predictive discrimination ability of logistic regression models for outcomes (30-day mortality and MRS) between GCS and GCS-M is illustrated using AUROCs.
MAIN RESULTS: The primary outcome for 30-day mortality was 1.04% and the AUROCs and 95% confidence intervals for prediction were GCS: 0.917 (0.887-0.946) vs. GCS-M:0.907 (0.875-0.938), P = 0.155. The secondary outcome for poor functional outcome (MRS ≥ 4) was 12.4% and the AUROCs and 95% confidence intervals for prediction were GCS: 0.617 (0.597-0.637) vs. GCS-M: 0.613 (0.593-0.633), P = 0.616. The subgroup analyses of patients with and without TBI demonstrated consistent discrimination ability between the GCS and GCS-M. The AUROC values of the GCS vs. GCS-M models for 30-day mortality and poor functional outcome were 0.92 (0.821-1.0) vs. 0.92 (0.824-1.0) ( P = 0.64) and 0.75 (0.72-0.78) vs. 0.74 (0.717-0.758) ( P = 0.21), respectively.
CONCLUSION: In the prehospital setting, on-scene GCS-M was comparable to GCS in predicting 30-day mortality and poor functional outcomes among patients with trauma, whether or not there was a TBI.