Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Calcium Chloride/chemistry
  2. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Calcium Chloride/chemistry
  3. Mawazi SM, Al-Mahmood SMA, Chatterjee B, Hadi HA, Doolaanea AA
    Pharmaceutics, 2019 Sep 20;11(10).
    PMID: 31547112 DOI: 10.3390/pharmaceutics11100488
    This study aimed to develop a carbamazepine (CBZ) sustained release formulation suitable for pediatric use with a lower risk of precipitation. The CBZ was first prepared as sustained release microparticles, and then the microparticles were embedded in alginate beads, and finally, the beads were suspended in a gel vehicle. The microparticles were prepared by a solvent evaporation method utilizing ethyl cellulose as a sustained release polymer and were evaluated for particle size, encapsulation efficiency, and release profile. The beads were fabricated by the dropwise addition of sodium alginate in calcium chloride solution and characterized for size, shape, and release properties. The gel was prepared using iota carrageenan as the gelling agent and evaluated for appearance, syneresis, drug content uniformity, rheology, release profile, and stability. The microparticles exhibited a particle size of 135.01 ± 0.61 µm with a monodisperse distribution and an encapsulation efficiency of 83.89 ± 3.98%. The beads were monodispersed with an average size of 1.4 ± 0.05 mm and a sphericity factor of less than 0.05. The gel was prepared using a 1:1 ratio (gel vehicle to beads) and exhibited no syneresis, good homogeneity, and good shear-thinning properties. The release profile from the beads and from the gel was not significantly affected, maintaining similarity to the tablet form. The gel properties were maintained for one month real time stability, but the accelerated stability showed reduced viscosity and pH with time. In conclusion, CBZ in a gel sustained release dosage form combines the advantages of the suspension form in terms of dosing flexibility, and the advantages of the tablet form in regards to the sustained release profile. This dosage form should be further investigated in vivo in animal models before being considered in clinical trials.
    Matched MeSH terms: Calcium Chloride
  4. Manshor NM, Razali N, Jusoh RR, Asmawi MZ, Mohamed N, Zainol S, et al.
    Int J Cardiol Hypertens, 2020 Mar;4:100024.
    PMID: 33447753 DOI: 10.1016/j.ijchy.2020.100024
    Introduction: Labisia pumila has been reported to possess activities including antioxidant, anti-aging and anti-cancer but there is no report on its vasorelaxant effects.

    Objective: This study aims to fractionate water extract of Labisia pumila, identify the compound(s) involved and elucidate the possible mechanism(s) of its vasorelaxant effects.

    Methods: Water extract of Labisia pumila was subjected to liquid-liquid extraction to obtain ethyl acetate, n-butanol and water fractions. In SHR aortic ring preparations, water fraction (WF-LPWE) was established as the most potent fraction for vasorelaxation. The pharmacological mechanisms of the vasorelaxant effect of WF-LPWE were investigated with and without the presence of various inhibitors. The cumulative dose-response curves of potassium chloride (KCl)-induced contractions were conducted to study the possible mechanisms of WF-LPWE in reducing vasoconstriction.

    Results: WF-LPWE produced dose-dependent vasorelaxant effect in endothelium-denuded aortic ring and showed non-competitive inhibition of dose-response curves of PE-induced contraction, and at its higher concentrations reduced KCl-induced contraction. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly inhibited vasorelaxant effect of WF-LPWE. WF-LPWE significantly reduced the release of intracellular calcium ion (Ca2+) from the intracellular stores and suppressed the calcium chloride (CaCal2)-induced contraction. Nω-nitro-L-arginine methyl ester (L-NAME), methylene blue, indomethacin and atropine did not influence the vasorelaxant effects of WF-LPWE.

    Conclusion: WF-LPWE exerts its vasorelaxant effect independently of endothelium and possibly by inhibiting the release of calcium from intracellular calcium stores, receptor-operated calcium channels and formation of inositol 1,4,5- triphosphate. WF-LPWE vasorelaxant effect may also mediated via nitric oxide-independent direct involvement of soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) pathways.

    Matched MeSH terms: Calcium Chloride
  5. Ahmad MN, Liew SL, Yarmo MA, Said M
    Biosci Biotechnol Biochem, 2012;76(8):1438-44.
    PMID: 22878182
    Protease is one of the most important industrial enzymes with a multitude of applications in both food and non-food sectors. Although most commercial proteases are microbial proteases, the potential of non-conventional protease sources, especially plants, should not be overlooked. In this study, horse mango (Mangifera foetida Lour) fruit, known to produce latex with a blistering effect upon contact with human skin, was chosen as a source of protease, and the effect of the extraction process on its protease activity evaluated. The crude enzyme was extracted from the kernels and extraction was optimized by a response surface methodology (RSM) using a central composite rotatable design (CCRD). The variables studied were pH (x(1)), CaCl(2) (x(2)), Triton X-100 (x(3)), and 1,4-dithryeitol (x(4)). The results obtained indicate that the quadratic model is significant for all the variables tested. Based on the RSM model generated, optimal extraction conditions were obtained at pH 6.0, 8.16 mM CaCl(2), 5.0% Triton X-100, and 10.0 mM DTT, and the estimated response was 95.5% (w/w). Verification test results showed that the difference between the calculated and the experimental protease activity value was only 2%. Based on the t-value, the effects of the variables arranged in ascending order of strength were CaCl(2) < pH < DTT < Triton X-100.
    Matched MeSH terms: Calcium Chloride
  6. Yaacob EN, Goethals J, Bajek A, Dierckens K, Bossier P, De Geest BG, et al.
    Mar Biotechnol (NY), 2017 Aug;19(4):391-400.
    PMID: 28643227 DOI: 10.1007/s10126-017-9758-4
    Aquaculture is the fastest growing animal production sector. However, the production of marine fish is still hampered by the high mortality rate in the first few weeks after hatching. Mortality in larvae is often caused by microbial infections. Today, the incorporation of immunostimulants into microparticles provides us new tools to enhance disease resistance in marine larviculture. In this study, we prepared alginate microparticles loaded with the model antigen fluorescein isothiocyanate conjugated-bovine serum albumin. Optimum concentrations of alginate and CaCl2, the correct alginate viscosity and the appropriate preparatory conditions led to the creation of desirable microparticles with the correct size for oral feeding in gnotobiotic European sea bass larvae. The prepared alginate microparticles were stable in sea water and were successfully ingested by gnotobiotic sea bass larvae at day after hatching 7 without causing any negative effects. Results suggest the suitability of this drug delivery system for targeting the innate immune system of fish larvae in order to enhance disease resistance and thus reduce mortality in larviculture.
    Matched MeSH terms: Calcium Chloride
  7. Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM
    Polymers (Basel), 2020 Apr 01;12(4).
    PMID: 32244671 DOI: 10.3390/polym12040772
    The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (-9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm-1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956-0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.
    Matched MeSH terms: Calcium Chloride
  8. Jaafar MHM, Hamid KA
    Curr Drug Deliv, 2019;16(7):672-686.
    PMID: 31250754 DOI: 10.2174/1567201816666190620110748
    BACKGROUND: In this study, four nanoparticle formulations (F1 to F4) comprising varying ratios of alginate, Pluronic F-68 and calcium chloride with a constant amount of insulin and chitosan as a coating material were prepared using polyelectrolyte complexation and ionotropic gelation methods to protect insulin against enzymatic degradation.

    METHODS: This study describes the formulation design, optimisation, characterisation and evaluation of insulin concentration via oral delivery in rats. A reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated to quantify insulin concentration in rat plasma. The proposed method produced a linear response over the concentration range of 0.39 to 50 µg/ml.

    RESULTS: In vitro release study showed that dissolution of insulin in simulated gastric juice of pH 1.2 was prevented by alginate core and chitosan coating but rapidly released in simulated intestinal fluid (pH 6.8). Additionally, Formulation 3 (F3) has a particle size of 340.40 ± 2.39 nm with narrow uniformity exhibiting encapsulation efficiency (EE) of 72.78 ± 1.25 % produced highest absorption profile of insulin with a bioavailability of 40.23 ±1.29% and reduced blood glucose after its oral administration in rats.

    CONCLUSION: In conclusion, insulin oral delivery system containing alginate and chitosan as a coating material has the ability to protect the insulin from enzymatic degradation thus enhance its absorption in the intestine. However, more work should be done for instance to involve human study to materialise this delivery system for human use.

    Matched MeSH terms: Calcium Chloride
  9. Abdelwahab SI, Mohamed AH, Mohamed OY, Oall M, Taha MM, Mohan S, et al.
    PMID: 21747892 DOI: 10.1155/2012/137386
    Clerodendron capitatum (Willd) (family: verbenaceae) is locally named as Gung and used traditionally to treat erectile dysfunction. Therefore, the current study was designed to investigate the erectogenic properties of C. capitatum. The relaxation effect of this plant was tested on phenylephrine precontracted rabbit corpus cavernosum smooth muscle (CCSM). The effects of C. capitatum were also examined on isolated Guinea pig atria alone, in the presence of calcium chloride (Ca(2+) channel blocker), atropine (cholinergic blocker), and glibenclamide (ATP-sensitive K(+) channel blocker). These effects were confirmed on isolated rabbit aortic strips. The extract, when tested colorimetrically for its inhibitory activities on phosphordiesterase-5 (PDE-5) in vitro towards p-nitrophenyl phenyl phosphate (PNPPP), was observed to induce significant dose-dependent inhibition of PDE-5, with an ID(50) of 0.161 mg/ml (P < .05). In conclusion, our results suggest that C. capitatum possesses a relaxant effect on CCSM, which is attributable to the inhibition of PDE-5, but not mediated by the release calcium, activation of adrenergic or cholinergic receptors, or the activation of potassium channels.
    Matched MeSH terms: Calcium Chloride
  10. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Calcium Chloride/chemistry
  11. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Calcium Chloride
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links