METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.
RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.
CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.
CONCLUSIONS: Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
DESIGN: Immunohistochemical expression of IGFBP-2 protein was semi-quantitatively assessed in tissue microarrays containing 9 normal cervix, 10 low grade cervical intraepithelial neoplasia (LGCIN), 10 high grade cervical intraepithelial neoplasia (HGCIN) and 42 squamous cell carcinoma (SCC) cases. The gene expression profiles of IGFBP-2, IGF-1, IGF-1R, PTEN, MDM2, AKT1 and TP53 were determined in three cervical tissue samples each from normal cervix, human papillomavirus (HPV)-infected LGCIN, HGCIN and SCC, using Human Transcriptome Array 2.0.
RESULTS: IGFBP-2 protein was highly expressed in the cytoplasm of SCC cells compared to normal cervix (p = .013). The expression was not significantly associated with CIN grade or SCC stage. Transcriptomics profiling demonstrated upregulation of IGFBP-2 and TP53 in HGCIN and SCC compared to normal cervix. IGF-1, IGF-1R and PTEN genes were downregulated in all histological groups. IGF-1 gene was significantly downregulated in SCC (p = .031), while PTEN gene was significantly downregulated in HGCIN (p = .012), compared to normal cervix. MDM2 and AKT1 genes were downregulated in LGCIN and HGCIN, while upregulated in SCC.
CONCLUSION: In cervical carcinogenesis, IGFBP-2 appears to play an oncogenic role, probably through an IGF-independent mechanism.
RESULTS: Using in silico methods, we studied the predicted interactions between bromelain and key proteins involved in NPC oncogenesis, specifically β-catenin, PIK3CA, mTOR, EGFR, and BCL2. Molecular docking strategies were performed using a myriad of computational tools. A 3D model of bromelain was constructed using SWISS-MODEL, followed by molecular docking simulations performed with ClusPro. The binding affinities of the docked complexes were evaluated using HawkDock, and the interactions were analysed with LigPlot+. The docking scores indicated potential spontaneous interactions, with binding affinities based on being - 103.89 kcal/mol (PIK3CA), -73.16 kcal/mol (EGFR), -71.18 kcal/mol (mTOR), -65.22 kcal/mol (β-catenin), and - 57.48 kcal/mol (BCL2). LigPlot + analysis revealed the presence of hydrogen bonds, hydrophobic interactions, and salt bridges, indicating stable predicted interactions.
CONCLUSION: Our findings suggest that bromelain can target key proteins involved in NPC oncogenesis, with the strongest affinity towards PIK3CA. This suggests a hypothetical insight into bromelain's anticancer effects on NPC through the modulation of the PI3K/Akt signaling pathway.