Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Muchtaridi M, Lestari D, Khairul Ikram NK, Gazzali AM, Hariono M, Wahab HA
    Molecules, 2021 Jun 04;26(11).
    PMID: 34199752 DOI: 10.3390/molecules26113402
    Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson's, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.
    Matched MeSH terms: Chlorogenic Acid/analysis*; Chlorogenic Acid/pharmacology; Chlorogenic Acid/chemistry
  2. Sethiya NK, Nahata A, Singh PK, Mishra SH
    J Ayurveda Integr Med, 2018 03 09;10(1):25-31.
    PMID: 29530454 DOI: 10.1016/j.jaim.2017.08.012
    BACKGROUND: Shankhpushpi is an Ayurvedic drug, widely used for its actions on the central nervous system, especially to improve intellect and boost memory. Four botanicals viz. Canscora decussata Schult. (CD), Clitorea ternatea Linn. (CT), Convolvulus pluricaulis Choisy. (CP) and Evolvulus alsinoides Linn. (EA) are considered as sources of Shankhpushpi by Indian practitioners on the basis of their morphological descriptions given in ancient texts.

    OBJECTIVE: The present study was undertaken to evaluate the neuropharmacological effect of four herbs commonly identified as source of Shankhpushpi.

    MATERIALS AND METHODS: Methanol extracts of all four varieties were tested and evaluated in vitro and in vivo for their neuropharmacological effects. Experiments such as protection against β-amyloid induced neurotoxicity on brain cell line (Neuro 2A), antioxidant potential, AchE (acetylcholinesterase enzyme) inhibition, and 5-LOX (lipoxygenase) enzyme inhibition were conducted for in vitro evaluation. For in vivo evaluation, scopolamine (0.3 mg/kg i.p.) induced memory retrieval using pole climbing apparatus and Morris water maze were performed in rat models.

    RESULTS: It was found that protective effects of EA and CD against β-amyloid induced neurotoxicity in Neuro 2A cells were significantly higher than CT and CP. EA proved to be superior than other varieties on the basis of antioxidant activity, AchE inhibitory and LOX inhibitory activities. The preventive activity of EA on scopolamine induced memory retrieval in pole climbing and Morris water maze task in rats was found to be higher than that of CD, CT and CP.

    CONCLUSION: EA has remarkable neuropharmacological effect as compared to other three varieties of Shankhpushpi. This effect may be attributed due to the presence of steroids (stigmasterol and betulinic acid), coumarins (scopoletin) and flavonoids (β-carotene and chlorogenic acid). Hence it can be used as a promising lead in development and management of neuronal disorders including Alzheimer's disease.

    Matched MeSH terms: Chlorogenic Acid
  3. Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071389 DOI: 10.3390/ijms22115786
    Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Chlorogenic Acid/administration & dosage; Chlorogenic Acid/pharmacokinetics; Chlorogenic Acid/chemistry*
  4. Vongsak B, Gritsanapan W, Wongkrajang Y, Jantan I
    Nat Prod Commun, 2013 Nov;8(11):1559-61.
    PMID: 24427941
    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.
    Matched MeSH terms: Chlorogenic Acid/pharmacology
  5. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Chlorogenic Acid/isolation & purification; Chlorogenic Acid/chemistry
  6. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: Chlorogenic Acid/chemistry
  7. Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ
    Int J Mol Sci, 2019 Sep 20;20(19).
    PMID: 31547100 DOI: 10.3390/ijms20194667
    Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
    Matched MeSH terms: Chlorogenic Acid
  8. Ammar Akram Kamarudin, Norazalina Saad, Nor Hafiza Sayuti, Nor Asma Ab. Razak, Norhaizan Mohd. Esa
    MyJurnal
    Introduction: Moringa oleifera Lam. is a miracle tree that has been widely utilised in folklore medicine due to its immense amount of phenolic constituents that could treat various ailments. Different techniques have been imple- mented to extract the phenolic but the parameters may not be optimised to further enhance the amount of phenolic extracted. Thus, the work aimed to enhance phenolic content and antioxidant activity of M. oleifera through RSM methodology, which is rapid and convenience. Methods: At first, antioxidant activity of different parts of M. oleifera (leaves, stem, pod and seed) were investigated. The plant part with the highest antioxidant activity was selected for the optimisation of extraction condition using RSM. In RSM, temperature (XA), extraction time (XB) and solid-liquid ratio (XC) were employed to study the effects on yield, total phenolics, flavonoids and antioxidant activity. Then, the optimum extraction condition obtained via RSM was utilised in LC-MS and HPLC analysis to determine the poten- tial bioactive constituents. Results: The leaves of M. oleifera displayed the highest antioxidant activity as compared to other plant parts. The optimum extraction condition obtained for the leaves extract was: temperature (XA): 82°C, extraction time (XB): 48 min and solid-liquid ratio (XC): 1:30 g/mL (w/v). Meanwhile, LC-MS revealed the presence of gallic acid, chlorogenic acid, quercetin, kaempferol and 3-O-glucoside kaempferol. HPLC analysis detected six compounds; gallic acid, epicatechin gallate, chlorogenic acid, myricetin, quercetin and kaempferol. Conclusion: The optimisation are promising to improve yield and antioxidant activity in M. oleifera as compared to non-conven- tional extractions.

    Matched MeSH terms: Chlorogenic Acid
  9. Radhakrishnan, N., Lam, K. W., Norhaizan, M. E.
    MyJurnal
    Carica papaya (papaya) fruits are available throughout the world and it is well accepted as food or as a quasi-drug. Aqueous papaya leaves extract have been used as treatment for dengue fever. This prompted us to carry out the docking study on these nine selected ligands (phyto-constituents of papaya) which are carpaine, dehydrocarpaine I and II, cardenolide, p-coumaric acid, chlorogenic acid, caricaxanthin, violaxanthin and zeaxanthin. These phytoconstituents were evaluated on the docking behaviour of dengue serotype 3 RNA-dependent RNA polymerase (RdRp); influenza A (H1N9) virus neuraminidase (NA); chikungunya virus glycoprotein (E3-E2-E1) and chikungunya virus non-structural protein2 (nsP2) protease using Discovery Studio Version 3.1. In addition, molecular physicochemical, drug-likeness, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) and TOPKAT (Toxicity Prediction by Komputer Assisted Technology) analyses were done. The molecular physicochemical analysis revealed that cardenolide and p-coumaric acid (2 ligands) complied with Lipinski’s rule of five. Dehydrocarpaine II, cardenolide, caricaxanthin, violaxanthin and zeaxanthin all the five ligands were predicted to have plasma protein binding (PPB) effect. Docking studies and binding free energy calculations revealed that p-coumaric acid exhibited very least binding energy irrespective of its target protein. Hence, the results of this present study exhibited the potential of these nine ligands as antiviral agent.
    Matched MeSH terms: Chlorogenic Acid
  10. Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A
    J Ethnopharmacol, 2024 May 10;325:117914.
    PMID: 38360381 DOI: 10.1016/j.jep.2024.117914
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and β-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated.

    AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.

    MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.

    RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p acid compounds. The 125 mg/kg MLE dose was safe with no adverse effects.

    Matched MeSH terms: Chlorogenic Acid
  11. Cheng SH, Barakatun-Nisak MY, Anthony J, Ismail A
    J Res Med Sci, 2015 Oct;20(10):1000-6.
    PMID: 26929767 DOI: 10.4103/1735-1995.172796
    Cosmos caudatus is widely used as a traditional medicine in Southeast Asia. C. caudatus has been reported as a rich source of bioactive compounds such as ascorbic acid, quercetin, and chlorogenic acid. Studies have shown that C. caudatus exhibits high anti-oxidant capacity and various medicinal properties, including anti-diabetic activity, anti-hypertensive properties, anti-inflammatory responses, bone-protective effect, and anti-microbial activity. This review aims to present the potential medicinal benefits of C. caudatus from the available scientific literature. We searched PubMed and ScienceDirect database for articles published from 1995 to January 2015. Overall, 15 articles related to C. caudatus and its medicinal benefits are reviewed. All these studies demonstrated that C. caudatus is effective, having demonstrated its anti-diabetic, anti-hypertensive, anti-inflammatory, bone-protective, anti-microbial, and anti-fungal activity in both in vitro and animal studies. None of the studies showed any negative effect of C. caudatus related to medicinal use. Currently available evidence suggests that C. caudatus has beneficial effects such as reducing blood glucose, reducing blood pressure, promoting healthy bone formation, and demonstrating anti-inflammatory and anti-microbial properties. However, human clinical trial is warranted.
    Matched MeSH terms: Chlorogenic Acid
  12. Hussein SZ, Yusoff KM, Makpol S, Yusof YA
    Molecules, 2011 Jul 27;16(8):6378-95.
    PMID: 21796076 DOI: 10.3390/molecules16066378
    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.
    Matched MeSH terms: Chlorogenic Acid/pharmacology
  13. Chin CY, Jalil J, Ng PY, Ng SF
    J Ethnopharmacol, 2018 Feb 15;212:188-199.
    PMID: 29080829 DOI: 10.1016/j.jep.2017.10.016
    ETHNOPHARMACOLOGICAL RELEVANCE: M.oleifera is a medicinal plant traditionally used for skin sores, sore throat and eye infections. Recently, the wound healing property of the leaves of M. oleifera was has been well demonstrated experimentally in both in vivo and in vitro models. However, there is a lack of research which focuses on formulating M.oleifera into a functional wound dressing. In this study, the M.oleifera leaf standardized aqueous extract with highest potency in vitro migration was formulated into a film for wound healing application.

    MATERIALS AND METHODS: Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells.

    RESULTS: All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing.

    CONCLUSION: A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates.

    Matched MeSH terms: Chlorogenic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links