OBJECTIVE: The present study was undertaken to evaluate the neuropharmacological effect of four herbs commonly identified as source of Shankhpushpi.
MATERIALS AND METHODS: Methanol extracts of all four varieties were tested and evaluated in vitro and in vivo for their neuropharmacological effects. Experiments such as protection against β-amyloid induced neurotoxicity on brain cell line (Neuro 2A), antioxidant potential, AchE (acetylcholinesterase enzyme) inhibition, and 5-LOX (lipoxygenase) enzyme inhibition were conducted for in vitro evaluation. For in vivo evaluation, scopolamine (0.3 mg/kg i.p.) induced memory retrieval using pole climbing apparatus and Morris water maze were performed in rat models.
RESULTS: It was found that protective effects of EA and CD against β-amyloid induced neurotoxicity in Neuro 2A cells were significantly higher than CT and CP. EA proved to be superior than other varieties on the basis of antioxidant activity, AchE inhibitory and LOX inhibitory activities. The preventive activity of EA on scopolamine induced memory retrieval in pole climbing and Morris water maze task in rats was found to be higher than that of CD, CT and CP.
CONCLUSION: EA has remarkable neuropharmacological effect as compared to other three varieties of Shankhpushpi. This effect may be attributed due to the presence of steroids (stigmasterol and betulinic acid), coumarins (scopoletin) and flavonoids (β-carotene and chlorogenic acid). Hence it can be used as a promising lead in development and management of neuronal disorders including Alzheimer's disease.
AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.
MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.
RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p acid compounds. The 125 mg/kg MLE dose was safe with no adverse effects.
MATERIALS AND METHODS: Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells.
RESULTS: All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing.
CONCLUSION: A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates.