Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Ching KY, Andriotis O, Sengers B, Stolz M
    J Biomater Appl, 2021 09;36(3):503-516.
    PMID: 33730922 DOI: 10.1177/08853282211002015
    Towards optimizing the growth of extracellular matrix to produce repair cartilage for healing articular cartilage (AC) defects in joints, scaffold-based tissue engineering approaches have recently become a focus of clinical research. Scaffold-based approaches by electrospinning aim to support the differentiation of chondrocytes by providing an ultrastructure similar to the fibrillar meshwork in native cartilage. In a first step, we demonstrate how the blending of chitosan with poly(ethylene oxide) (PEO) allows concentrated chitosan solution to become electrospinnable. The chitosan-based scaffolds share the chemical structure and characteristics of glycosaminoglycans, which are important structural components of the cartilage extracellular matrix. Electrospinning produced nanofibrils of ∼100 nm thickness that are closely mimicking the size of collagen fibrils in human AC. The polymer scaffolds were stabilized in physiological conditions and their stiffness was tuned by introducing the biocompatible natural crosslinker genipin. We produced scaffolds that were crosslinked with 1.0% genipin to obtain values of stiffness that were in between the stiffness of the superficial zone human AC of 600 ± 150 kPa and deep zone AC of 1854 ± 483 kPa, whereas the stiffness of 1.5% genipin crosslinked scaffold was similar to the stiffness of deep zone AC. The scaffolds were degradable, which was indicated by changes in the fibril structure and a decrease in the scaffold stiffness after seven months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes (HACs) showed a cell viability of over 90% on the scaffolds and new extracellular matrix deposited on the scaffolds.
    Matched MeSH terms: Chondrocytes/cytology
  2. Pingguan-Murphy B, Nawi I
    Clinics (Sao Paulo), 2012 Aug;67(8):939-44.
    PMID: 22948463
    OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in three-dimensional cultures.

    METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.

    RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.

    CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

    Matched MeSH terms: Chondrocytes/cytology
  3. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:7-8.
    PMID: 15468792
    The regulation roles of insulin-like growth factor-1 (IGF-1) with basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in human nasal septum chondrocytes monolayer culture and cartilage engineering was investigated in this study. The role of IGF-1 with bFGF and TGFbeta2 was investigated by measuring chondrocyte growth kinetic and collagen genes expression. IGF-1 together with bFGF and TGFbeta2 promote cartilage tissue engineering, increase type II collagen expression and enhance the histological features of engineered cartilage.
    Matched MeSH terms: Chondrocytes/cytology*
  4. Goh JC, Shao XX, Hutmacher D, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:17-8.
    PMID: 15468797
    Matched MeSH terms: Chondrocytes/cytology*
  5. Choi JR, Yong KW, Choi JY
    J Cell Physiol, 2018 Mar;233(3):1913-1928.
    PMID: 28542924 DOI: 10.1002/jcp.26018
    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
    Matched MeSH terms: Chondrocytes/cytology
  6. Md Nazir N, Zulkifly AH, Khalid KA, Zainol I, Zamli Z, Sha'ban M
    Tissue Eng Regen Med, 2019 06;16(3):285-299.
    PMID: 31205857 DOI: 10.1007/s13770-019-00191-1
    Background: This study aimed to observe the cartilaginous matrix production in SRY (sex determining region Y)-box 9 (SOX9)- and/or telomerase reverse transcriptase (TERT)-transfected chondrocytes from monolayer to three-dimensional (3D) culture.

    Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.

    Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.

    Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.

    Matched MeSH terms: Chondrocytes/cytology
  7. Ab-Rahim S, Selvaratnam L, Kamarul T
    Cell Biol Int, 2008 Jul;32(7):841-7.
    PMID: 18479947 DOI: 10.1016/j.cellbi.2008.03.016
    Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.
    Matched MeSH terms: Chondrocytes/cytology
  8. Khaghani SAB, Akbarova G, Soon CF, Dilbazi G
    Cell Tissue Bank, 2018 Dec;19(4):763-775.
    PMID: 30377863 DOI: 10.1007/s10561-018-9732-z
    Cytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 105 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis.
    Matched MeSH terms: Chondrocytes/cytology*
  9. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
    Matched MeSH terms: Chondrocytes/cytology
  10. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Singapore Med J, 2007 Apr;48(4):324-32.
    PMID: 17384880
    The objectives of this study were to determine the optimum concentration of basic fibroblast growth factor (bFGF) in foetal bovine serum (FBS) or human serum (HS) supplemented medium for adult human nasal septum chondrocyte culture and to evaluate the potential of cartilage regeneration.
    Matched MeSH terms: Chondrocytes/cytology
  11. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Chondrocytes/cytology
  12. Tay LX, Lim CK, Mansor A, Kamarul T
    Int J Med Sci, 2014;11(1):24-33.
    PMID: 24396283 DOI: 10.7150/ijms.7244
    This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs).
    Matched MeSH terms: Chondrocytes/cytology
  13. Munirah S, Kim SH, Ruszymah BH, Khang G
    Eur Cell Mater, 2008 Feb 21;15:41-52.
    PMID: 18288632
    Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid) (PLGA) hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.
    Matched MeSH terms: Chondrocytes/cytology
  14. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Chondrocytes/cytology*
  15. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Chondrocytes/cytology*
  16. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Eur Cell Mater, 2005 Jun 17;9:58-67; discussion 67.
    PMID: 15962238
    This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human nasal septum chondrocytes monolayer culture expansion and gene expression were evaluated in various culture media either added with 2% fetal bovine serum (FBS) or 1 ng/mL basic fibroblast growth factor plus 1 ng/mL transforming growth factor or both serum and growth factors supplementation in comparison with medium added with 10%FBS. Chondrocytes cultured in medium added with 2% fetal bovine serum and growth factors either supplemented with or without ITS were then mixed with pluronic F-127 hydrogel for in vivo tissue engineered cartilage formation in nude mice model. Engineered tissues were removed after 8 weeks of implantation and evaluated with histological staining, immunohistochemistry, transmission electron microscopy and quantitative gene expression analysis. ITS promoted human chondrocytes proliferation and reduced chondrocytes dedifferentiation in media supplemented with serum and growth factors. ITS with 2% FBS and growth factors provided 15-fold increased in chondrocytes number by the end of the culture period compared to the standard culture medium used in chondrocytes culture (medium added with 10% FBS). Engineered tissue resulted from ITS supplementation demonstrated higher quality of cartilage formation. In conclusion, our study has demonstrated the benefits of ITS supplementation in human chondrocytes monolayer culture and tissue engineering cartilage formation.
    Matched MeSH terms: Chondrocytes/cytology*
  17. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al.
    J Orthop Res, 2011 Sep;29(9):1336-42.
    PMID: 21445989 DOI: 10.1002/jor.21413
    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p  0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes.
    Matched MeSH terms: Chondrocytes/cytology*
  18. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Chondrocytes/cytology*
  19. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Chondrocytes/cytology*
  20. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T
    Mol Cell Biochem, 2013 Apr;376(1-2):11-20.
    PMID: 23238871 DOI: 10.1007/s11010-012-1543-0
    Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
    Matched MeSH terms: Chondrocytes/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links