Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Baltzer JL, Davies SJ
    Ecol Evol, 2012 Nov;2(11):2682-94.
    PMID: 23170205 DOI: 10.1002/ece3.383
    Drought and pests are primary abiotic and biotic factors proposed as selective filters acting on species distributions along rainfall gradients in tropical forests and may contribute importantly to species distributional limits, performance, and diversity gradients. Recent research demonstrates linkages between species distributions along rainfall gradients and physiological drought tolerance; corresponding experimental examinations of the contribution of pest pressure to distributional limits and potential interactions between drought and herbivory are limited. This study aims to quantitate differential performance and herbivory as a function of species range limits across a climatic and floristic transition in Southeast Asia. Khao Chong Botanical Garden, Thailand and Pasoh Forest Reserve, Malaysia straddle the Kangar-Pattani Line. A reciprocal transplantation across a seasonality gradient was established using two groups of species ("widespread" taxa whose distributions include seasonally dry forests and "aseasonal" taxa whose distributions are limited to aseasonal forests). Growth, biomass allocation, survival, and herbivory were monitored for 19 months. Systematic differences in performance were a function of species distribution in relation to rainfall seasonality. In aseasonal Pasoh, aseasonal species had both greater growth and survivorship than widespread species. These differences were not a function of differential herbivory as widespread and aseasonal species experienced similar damage in the aseasonal forest. In seasonally dry Khao Chong, widespread species showed higher survivorship than aseasonal species, but these differences were only apparent during drought. We link this differential performance to physiological mechanisms as well as differential tolerance of biotic pressure during drought stress. Systematic decreases in seedling survival in aseasonal taxa during drought corresponded with previously documented physiological differences and may be exacerbated by herbivore damage. These results have important implications for tropical diversity and community composition in light of predicted increases in the frequency and severity of drought in hyperdiverse tropical forests.
    Matched MeSH terms: Droughts
  2. Hoque MA, Pradhan B, Ahmed N, Sohel MSI
    Sci Total Environ, 2020 Nov 17.
    PMID: 33248778 DOI: 10.1016/j.scitotenv.2020.143600
    Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.
    Matched MeSH terms: Droughts
  3. Tariq Shahzad, Muhammad Mansoor Javaid, Hasnain Waheed, Tasawer Abbas, Muhammad Ashraf, Feng-Min Li, et al.
    Sains Malaysiana, 2018;47:2625-2635.
    Drought is one of the commonly occurring environmental stresses, limiting crop production in many countries. Selection
    of cultivar is the most effective and economical means for alleviating the adverse effects of drought stress on crops. The
    present study aimed to investigate the growth, some physiological processes, yield and quality of some newly-developed
    wheat cultivars (AARI-2011, AAS-2011, Faisalabad-2008, Millat-2011 and Punjab-2011) under field drought stress
    conditions. The cultivars were sown in a field under normal irrigation and drought-induced conditions. Maximum net
    photosynthetic rate was recorded in cv. AAS-2011 at growth stage of 67 days after wheat emergence under normal irrigation
    and cv. Faisalabad-2008 at 67 days after wheat emergence under drought condition. Leaf stomatal conductance and
    transpiration rate were maximum in cv. Faisalabad-2008 under drought conditions. The adverse effects of drought stress
    were observed more on cv. Millat-2011 than Faisalabad-2008, with respect to net photosynthetic rate and transpiration.
    Drought exerted a significant adverse effect on leaf stomatal conductance at 74 days after wheat emergence which was
    recorded as 230 mmol m-2 s-1. Among the cultivars, AAS-2011 recorded maximum yield traits and grain yield under normal
    irrigation condition and Faisalabad-2008 under drought condition. Cultivar Millat-2011 was the most susceptible to
    drought and Faisalabad-2008 the most resistant to drought. Faisalabad-2008 maintained the quality at the most under
    drought stress conditions. It is concluded that Fasialabad-2008 should be grown under field drought conditions to achieve
    maximal yield and quality of wheat.
    Matched MeSH terms: Droughts
  4. Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S
    Sci Rep, 2021 Feb 09;11(1):3435.
    PMID: 33564055 DOI: 10.1038/s41598-021-82977-9
    A noticeable increase in drought frequency and severity has been observed across the globe due to climate change, which attracted scientists in development of drought prediction models for mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are probabilistic and therefore, highly stochastic and non-linear. The current research investigated the capability of different versions of relatively well-explored machine learning (ML) models including random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme learning machine (ELM) and online sequential-ELM (OSELM) in predicting the most widely used DI known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). Models were developed using monthly rainfall data for the period of 1949-2013 at four meteorological stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region of Bangladesh which frequently experiences droughts. The model inputs were decided based on correlation statistics and the prediction capability was evaluated using several statistical metrics including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), Willmott's Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model in forecasting droughts with minimal RMSE in the range of 0.07-0.85, 0.08-0.76, 0.062-0.80 and 0.042-0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except one-month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 and 0.42, respectively.
    Matched MeSH terms: Droughts
  5. Azmy MM, Hashim M, Numata S, Hosaka T, Noor NS, Fletcher C
    Sci Rep, 2016 08 26;6:32329.
    PMID: 27561887 DOI: 10.1038/srep32329
    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.
    Matched MeSH terms: Droughts
  6. Dalu T, Wasserman RJ, Dalu MT
    Glob Chang Biol, 2017 03;23(3):983-985.
    PMID: 27869348 DOI: 10.1111/gcb.13549
    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition.
    Matched MeSH terms: Droughts
  7. Dinesh, S.
    ASM Science Journal, 2010;4(1):62-73.
    MyJurnal
    Studies conducted on the various geometric properties of skeletons of water bodies have shown highly promising results. However, these studies were made under the assumption that water bodies were static objects and that they remained constant over time. Water bodies are actually dynamic objects; they go through significant spatio-temporal changes due to drought and flood. In this study, the characterization of skeletons of simulated drought and flood of water bodies was performed. It was observed that as the drought level increased from 1 to 9, the average length of the skeletons decreased due to reduction in the size of the water bodies and increase in the number of water bodies. As the drought level increased from 9 to 15, the average length of the skeletons increased further due to vanishing of small water bodies. Flood caused an increase in the average length of the skeletons due to merging of adjacent water bodies. Power law relationships were observed between the average length of the skeletons of the simulated drought/flood and the level of drought/flood. The scaling exponent of these power laws which was named as a fractal dimension, indicated the rate of change of the average length of the skeletons of simulated drought/flood of water bodies over varying levels of drought/flood. However, errors observed in the goodness of fit of the plots indicated that monofractals were not sufficient to characterise the skeletons of simulated drought and flood of water bodies. Multifractals and lacunarity analysis were required for more accurate characterisation.
    Matched MeSH terms: Droughts
  8. Toni B, Monfared HH, Mat Isa MN, Md Isa N, Ismail I, Zainal Z
    Data Brief, 2017 Oct;14:260-266.
    PMID: 28795103 DOI: 10.1016/j.dib.2017.07.043
    Drought stress is the main abiotic factor affecting rice production. Rain-fed upland rice which is grown on unbounded fields and totally dependent on rainfall for moisture is more prone to drought stress compared to rice from other ecosystems. However, upland rice has adapted to this limited water condition, thus are more drought tolerant than rice from other ecosystems. We performed the first transcriptome sequencing of drought tolerant indica upland rice cultivar Kuku Belang to identify differentially expressed genes related to drought tolerance mechanism. Raw reads for non-treated and PEG-treated Oryza sativa subspecies indica cv. Kuku Belang were deposited in the NCBI SRA database with accession number SRP074520 (https://www.ncbi.nlm.nih.gov/sra?term=SRP074520).
    Matched MeSH terms: Droughts
  9. Newbery DM, Lingenfelder M
    PLoS One, 2022;17(6):e0270140.
    PMID: 35771743 DOI: 10.1371/journal.pone.0270140
    Time-series data offer a way of investigating the causes driving ecological processes as phenomena. To test for possible differences in water relations between species of different forest structural guilds at Danum (Sabah, NE Borneo), daily stem girth increments (gthi), of 18 trees across six species were regressed individually on soil moisture potential (SMP) and temperature (TEMP), accounting for temporal autocorrelation (in GLS-arima models), and compared between a wet and a dry period. The best-fitting significant variables were SMP the day before and TEMP the same day. The first resulted in a mix of positive and negative coefficients, the second largely positive ones. An adjustment for dry-period showers was applied. Interactions were stronger in dry than wet period. Negative relationships for overstorey trees can be interpreted in a reversed causal sense: fast transporting stems depleted soil water and lowered SMP. Positive relationships for understorey trees meant they took up most water at high SMP. The unexpected negative relationships for these small trees may have been due to their roots accessing deeper water supplies (if SMP was inversely related to that of the surface layer), and this was influenced by competition with larger neighbour trees. A tree-soil flux dynamics manifold may have been operating. Patterns of mean diurnal girth variation were more consistent among species, and time-series coefficients were negatively related to their maxima. Expected differences in response to SMP in the wet and dry periods did not clearly support a previous hypothesis differentiating drought and non-drought tolerant understorey guilds. Trees within species showed highly individual responses when tree size was standardized. Data on individual root systems and SMP at several depths are needed to get closer to the mechanisms that underlie the tree-soil water phenomena in these tropical forests. Neighborhood stochasticity importantly creates varying local environments experienced by individual trees.
    Matched MeSH terms: Droughts
  10. Ishida A, Toma T, Matsumoto Y, Yap SK, Maruyama Y
    Tree Physiol, 1996 Sep;16(9):779-85.
    PMID: 14871685
    Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.
    Matched MeSH terms: Droughts
  11. Ho WK, Muchugi A, Muthemba S, Kariba R, Mavenkeni BO, Hendre P, et al.
    Genome, 2016 Jun;59(6):427-31.
    PMID: 27244454 DOI: 10.1139/gen-2016-0029
    Maximizing the research output from a limited investment is often the major challenge for minor and underutilized crops. However, such crops may be tolerant to biotic and abiotic stresses and are adapted to local, marginal, and low-input environments. Their development through breeding will provide an important resource for future agricultural system resilience and diversification in the context of changing climates and the need to achieve food security. The African Orphan Crops Consortium recognizes the values of genomic resources in facilitating the improvement of such crops. Prior to beginning genome sequencing there is a need for an assessment of line varietal purity and to estimate any residual heterozygosity. Here we present an example from bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized drought tolerant African legume. Two released varieties from Zimbabwe, identified as potential genotypes for whole genome sequencing (WGS), were genotyped with 20 species-specific SSR markers. The results indicate that the cultivars are actually a mix of related inbred genotypes, and the analysis allowed a strategy of single plant selection to be used to generate non-heterogeneous DNA for WGS. The markers also confirmed very low levels of heterozygosity within individual plants. The application of a pre-screen using co-dominant microsatellite markers is expected to substantially improve the genome assembly, compared to a cultivar bulking approach that could have been adopted.
    Matched MeSH terms: Droughts
  12. Payus CM, Jikilim C, Sentian J
    Heliyon, 2020 Sep;6(9):e04997.
    PMID: 33005801 DOI: 10.1016/j.heliyon.2020.e04997
    The purposes of this research were to study the characteristics chemistry of pH, anions and cations in rainwater, and to identify the possible sources that contributing to the acid precipitation during southwest monsoon season with occurrence of extreme drought event. During the southwest monsoon season, it normally occurs along with haze phenomenon that every year will hit Southeast Asia. This condition will aggravate with high acidic particles in the atmosphere due to the prolonged drought. The analysed parameters which involved pH, anions (NO3-, SO42- and Cl-) and cations (Ca2+, Mg2+, Na+ and K+) were analysed using pH meter, Hach DR 2800, argentometric method and ICP-OES. From the findings, it showed that acid rain occurred during the southwest monsoon season with the range of pH values from 4.95 ± 0.13 to 6.40 ± 0.03 and the total average of pH 5.71 ± 0.32. Anions NO3-, SO42- and Cl- were found to be the dominant compositions of the acid rain occurrences with higher concentrations detected. In overall, rural area recorded with higher acidity of precipitation at total average of pH 5.54 ± 0.39 compared to urban area at pH 5.77 ± 0.26. Rural area surprisingly recorded higher frequency occurrences of acid rain with pH lesser than 5.6 and below compared to urban area. As for public health and safety, all rainwater samples during the acid rain event were found exceeded the allowable limits of NWQS and WHO standards, that shown not suitable for skin contact, recreational purposes even for drinking purposes.
    Matched MeSH terms: Droughts
  13. Mohd Ikmal A, Noraziyah AAS, Wickneswari R
    Plants (Basel), 2021 Jan 24;10(2).
    PMID: 33498963 DOI: 10.3390/plants10020225
    Drought and submergence have been the major constraint in rice production. The present study was conducted to develop high-yielding rice lines with tolerance to drought and submergence by introgressing Sub1 into a rice line with drought yield QTL (qDTY; QTL = quantitative trait loci) viz. qDTY3.1 and qDTY12.1 using marker-assisted breeding. We report here the effect of different combinations of Sub1 and qDTY on morpho-physiological, agronomical traits and yield under reproductive stage drought stress (RS) and non-stress (NS) conditions. Lines with outstanding performance in RS and NS trials were also evaluated in vegetative stage submergence stress (VS) trial to assess the tolerance level. The QTL class analysis revealed Sub1 + qDTY3.1 as the best QTL combination affecting the measured traits in RS trial followed by Sub1 + qDTY12.1. The effects of single Sub1, qDTY3.1 and qDTY12.1 were not as superior as when the QTLs are combined, suggesting the positive interaction of Sub1 and qDTY. Best performing lines selected from the RS and NS trials recorded yield advantage up to 4453.69 kg ha-1 and 6954 kg ha-1 over the parents, respectively. The lines were also found having great tolerance to submergence ranging from 80% to 100%, contributed by a lower percentage of shoot elongation and reduction of chlorophyll content after 14 days of VS. These lines could provide yield sustainability to farmers in regions impacted with drought and submergence while serving as important genetic materials for future breeding programs.
    Matched MeSH terms: Droughts
  14. Alvina Simon, Vijay Kumar Subbiah, Chee, Fong Tyng, Noor Hydayaty Md Yusuf
    MyJurnal
    Rice is the most important staple crop in Malaysia and is cultivated all over the country, including the state of Sabah. The uniqueness of rice cultivation in Sabah lies in the type of rice itself, deriving mainly from local or non-commercial cultivars but with distinctive characteristics including long grains, aromatic properties, and drought tolerance. However, despite having these important agricultural traits, information on the genetic diversity of Sabah rice remains limited. Hence, the purpose of this study was to determine the genetic polymorphisms of Sabah rice using random amplification of polymorphic DNA (RAPD) markers. A total of 101 alleles were profiled, from which 94% were identified as polymorphic. Phylogenetic analysis grouped the rice samples into three clusters, with two clusters classifying the ability of rice to grow under different planting conditions, suitable for growth irrigate and upland condition. The first cluster was dominated by cultivars that could survive in wet (irrigated) areas, while the other featured those that were found in dry (upland) areas. Furthermore, two alleles, OPA-05-B2 and OPA-01-B11, were found to be unique to cultivars within the upland cluster and were thus proposed to be involved in dry environmental adaptation. The results of the present study provide an insight into the genetic relationships and diversity of Sabah rice.
    Matched MeSH terms: Droughts
  15. Nunes MH, Jucker T, Riutta T, Svátek M, Kvasnica J, Rejžek M, et al.
    Nat Commun, 2021 03 09;12(1):1526.
    PMID: 33750781 DOI: 10.1038/s41467-020-20811-y
    The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
    Matched MeSH terms: Droughts
  16. Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SAR, Ayal D, et al.
    Sci Total Environ, 2021 Jul 20;779:146414.
    PMID: 33735656 DOI: 10.1016/j.scitotenv.2021.146414
    Climate change is one of the major challenges societies round the world face at present. Apart from efforts to achieve a reduction of emissions of greenhouse gases so as to mitigate the problem, there is a perceived need for adaptation initiatives urgently. Ecosystems are known to play an important role in climate change adaptation processes, since some of the services they provide, may reduce the impacts of extreme events and disturbance, such as wildfires, floods, and droughts. This role is especially important in regions vulnerable to climate change such as the African continent, whose adaptation capacity is limited by many geographic and socio-economic constraints. In Africa, interventions aimed at enhancing ecosystem services may play a key role in supporting climate change adaptation efforts. In order to shed some light on this aspect, this paper reviews the role of ecosystems services and investigates how they are being influenced by climate change in Africa. It contains a set of case studies from a sample of African countries, which serve the purpose to demonstrate the damages incurred, and how such damages disrupt ecosystem services. Based on the data gathered, some measures which may assist in fostering the cause of ecosystems services are listed, so as to cater for a better protection of some of the endangered Africa ecosystems, and the services they provide.
    Matched MeSH terms: Droughts
  17. Mohd Armi, A.S., Afiza, A.S., Mohd Ramzi, A.
    ASM Science Journal, 2012;6(2):149-151.
    MyJurnal
    Over the last century, the earth’s climate has changed. It is a serious global, long-term problem which involves complex interactions. A lot of evidence suggests that most of the observed factors contributing to the crisis over the last 50 years can be attributed to human activities. Malaysia has always been vulnerable to extreme climatic events such as typhoons, floods and drought. We expect climate change to exacerbate these vulnerabilities. To ensure, that our water resources will always be secure and ready for use. We need to create awareness in the public and the policy makers so that they will acknowledge that the climate change issue is real. They also need to accept that actions to adapt with our vulnerabilities should be immediately put in place. We can do this by integrating the various sector policies and securing the participation of all stakeholders in Malaysia and other countries.
    Matched MeSH terms: Droughts
  18. Tangang FT, Liew Juneng, Ester Salimun, Kwan MS, Loh JL, Halimatun Muhamad
    Sains Malaysiana, 2012;41:1355-1366.
    This paper provides an overview of the current available scientific knowledge pertaining to climate change and climate variability over Malaysia. Malaysia is situated in the western part of the Maritime Continent of the Southeast Asian region. Hence, regional climate change and climate variability over this region are of central importance to the understanding of climate change in Malaysia. The latest regional climate downscaling study indicates that, depending on the emission scenario, the mean surface temperature over Malaysia would increase by 3-5oC by the end of the 21st century. The mean precipitation is projected to decrease (increase) during Northern Hemisphere winter (summer). However, future variabilities associated with regional phenomena such as the monsoon, El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Madden-Julian Oscillation (MJO) are largely unknown. Current knowledge on the intensity and frequency of future extreme events (drought and flood) is limited. This is also the case for regional sea level rise and long-term changes in regional seas, especially in the southern region of the South China Sea. We conclude that knowledge gap in the science of climate change over Malaysia and the surrounding region remains wide.
    Matched MeSH terms: Droughts
  19. Phuchiwan Suriyawong, Elizabeth A. Bergey
    Sains Malaysiana, 2018;47:1379-1386.
    A series of check dams (or small dams in shallow streams) have been placed on many streams throughout Thailand and
    the number of them continue to increase. Check dam construction activities have been emphasized by the government
    and private sector entities over the last decade to prevent severe flood or drought due to changes in rainfall patterns. This
    study evaluated distribution of functional feeding groups (FFG) in a stream with a high density of check dams. Twelve
    sampling sites at three altitudes (500, 900 and 1500 m asl) included undammed and nearby dammed sections (above
    and below check dams) were used. Aquatic insects were collected monthly at each site for a year and categorized into
    FFG. Aquatic insect composition of undammed and above dam sites was different. Abundance within each FFG at above
    dam sites significantly differed from undammed sites. Taxonomic richness at 1500 and 900 m altitudes was decreased
    at above dam sites compared with the corresponding undammed sites, whereas above dam sites of 500 m altitude had
    higher richness than undammed site. High abundance of predators and collector-gatherers associated with reservoirs
    and fine sediment accumulation above dams, where filter-feeders were scarce. Shredder abundance varied among sites
    and was highest where leaf packs were most abundant. Scrapers were least abundant group and inconsistent with the
    dams. Distribution of FFG was similar to changes in other regulated streams. The composition of FFG reflected the
    stream ecosystem conditions through adaptation of communities to stream habitat and food resources, including those
    associated with check dam construction.
    Matched MeSH terms: Droughts
  20. Rizwan Maqbool, Waqar Ali, Muhammad Ather Nadeem, Tasawer Abbas
    Sains Malaysiana, 2018;47:51-58.
    Boron is considered important to improve the drought resistance, yield and protein contents of pulses. Two years of field experiment was conducted to evaluate the effect of boron application and water stress given at vegetative and flowering stages on growth, yield and protein contents of mungbean during spring 2014 and 2015. The experiment was laid out in randomized complete block design with split-plot arrangement giving more emphasis to boron. The experiment comprised three water stress levels (normal irrigation, water stress at vegetative stage and water stress at reproductive phase) and four boron levels (0, 2, 4 and 6 kg ha-1). Final seed yield was significantly increased by different levels of boron application both under normal and water stressed conditions. The increase in yield was mainly due to greater plant height, number of pods bearing branches, number of pods per plant, number of seeds per pod and 1000-grain weight. Boron application at 4 kg ha-1 caused 17%, 10% and 4% increase in grain yield under normal irrigation, stress at vegetative stage and water stress at reproductive phase, respectively. Protein contents were also increased (9-16%) at same boron treatment. Most parameters showed a marked decrease at higher dose (6 kg ha-1) of boron. In conclusion, the boron application at rate of 4 kg ha-1 in clay-loam soil performed the best to enhance mungbean growth, yield and seed protein both under normal and water stressed conditions.
    Matched MeSH terms: Droughts
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links