Displaying publications 21 - 40 of 72 in total

Abstract:
Sort:
  1. Huseien GF, Sam ARM, Faridmehr I, Baghban MH
    Materials (Basel), 2021 Mar 06;14(5).
    PMID: 33800835 DOI: 10.3390/ma14051255
    This research investigated the application of epoxy resin polymer as a self-healing strategy for improving the mechanical and durability properties of cement-based mortar. The epoxy resin was added to the concrete mix at various levels (5, 10, 15, and 20% of cement weight), and the effectiveness of healing was evaluated by microstructural analysis, compressive strength, and non-destructive (ultrasonic pulse velocity) tests. Dry and wet-dry conditions were considered for curing, and for generating artificial cracks, specimens at different curing ages (1 and 6 months) were subjected to compressive testing (50 and 80% of specimen's ultimate compressive strength). The results indicated that the mechanical properties in the specimen prepared by 10% epoxy resin and cured under wet-dry conditions was higher compared to other specimens. The degree of damage and healing efficiency index of this particular mix design were significantly affected by the healing duration and cracking age. An optimized artificial neural network (ANN) combined with a firefly algorithm was developed to estimate these indexes over the self-healing process. Overall, it was concluded that the epoxy resin polymer has high potential as a mechanical properties self-healing agent in cement-based mortar.
    Matched MeSH terms: Epoxy Resins
  2. Hussin R, Sharif S, Nabiałek M, Zamree Abd Rahim S, Khushairi MTM, Suhaimi MA, et al.
    Materials (Basel), 2021 Feb 01;14(3).
    PMID: 33535504 DOI: 10.3390/ma14030665
    The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.
    Matched MeSH terms: Epoxy Resins
  3. Leemsuthep A, Zakaria Z, Tanrattanakul V, Ramarad S, Muniyadi M, Jaruga T, et al.
    Materials (Basel), 2021 Apr 28;14(9).
    PMID: 33924997 DOI: 10.3390/ma14092282
    This paper explored the effects of ammonium bicarbonate and different ratios of epoxy to polyamide on the formation of porous epoxy micro-beads through a single epoxy droplet. A single drop of a mixture, consisting of epoxy, polyamide, and ammonium bicarbonate, was dropped into heated corn oil at a temperature of 100 °C. An epoxy droplet was formed due to the immiscibility of the epoxy mixture and corn oil. The ammonium bicarbonate within this droplet underwent a decomposition reaction, while the epoxy and polyamide underwent a curing reaction, to form porous epoxy micro-beads. The result showed that the higher ammonium bicarbonate content in the porous, epoxy micro-beads increased the decomposition rate up to 11.52 × 10-3 cm3/s. In addition, a higher total volume of gas was generated when a higher ammonium bicarbonate content was decomposed. This led to the formation of porous epoxy micro-beads with a smaller particle size, lower specific gravity, and better thermal stability. At an epoxy to polyamide ratio of 10:6, many smaller micro-beads, with particle sizes ranging from 201 to 400 μm, were obtained at an ammonium bicarbonate content of 10 phr. Moreover, the porous epoxy micro-beads with open pores were shown to have a low specific gravity of about 0.93 and high thermal stability at a high ammonium bicarbonate content. Based on the findings, it was concluded that porous epoxy micro-beads were successfully produced using a single epoxy droplet in heated corn oil, where their shape and particle size depended on the content of ammonium bicarbonate and the ratio of epoxy to polyamide used.
    Matched MeSH terms: Epoxy Resins
  4. Lazar PJL, Sengottuvelu R, Natarajan E
    Materials (Basel), 2018 Nov 05;11(11).
    PMID: 30400592 DOI: 10.3390/ma11112186
    The principal objective of this research work was to investigate the results of impregnating epoxy matrix-glass fibre composite laminates with nanosilica as secondary reinforcement. 0.5, 0.75, 1 and 3 wt% nanosilica was used and thereafter properties of composites were assessed through tensile, three point bending, quasi static indentation tests and dynamic mechanical analysis. Scanning electron microscope examinations were done on fracture surfaces and failure modes were analyzed. The internal failures of the composite due to quasi-static indentation were evaluated through C-Scan. Among samples of different weight fractions, 0.75 wt% nanosilica reinforced composite laminates exhibited substantial increase of 42% in tensile strength and 39.46% in flexural strength. The reduction in glass transition temperature (Tg), increase in storage modulus (E'), loss modulus (E″) and damping factor (tan δ) were also observed. Quasi-static indentation assessments revealed that energy absorption property was enhanced significantly by 53.97%. Hence nanosilica up to 0.75 wt% can be used as a potential candidate for secondary reinforcement in epoxy composite laminates.
    Matched MeSH terms: Epoxy Resins
  5. Ismail AS, Jawaid M, Naveen J
    Materials (Basel), 2019 Jun 28;12(13).
    PMID: 31261821 DOI: 10.3390/ma12132094
    This study aims to investigate the void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. The composites were made using the hand lay-up method. The weight ratios of kenaf/bamboo were 30:70, 50:50 and 70:30. Further, kenaf and bamboo composites were fabricated for the purpose of comparison. The hybridization of woven kenaf/bamboo reduced the void content. The void contents of hybrid composites were almost similar. An enhancement in elongation at break, tensile strength and modulus of hybrid composites was observed until a kenaf/bamboo ratio of 50:50. Kenaf/bamboo (50:50) hybrid composite displays the highest elongation at break, tensile strength and modulus compared to the other hybrid composites which are 2.42 mm, 55.18 MPa and 5.15 GPa, respectively. On the other hand, the highest natural frequency and damping factors were observed for Bamboo/Kenaf (30:70) hybrid composites. The sound absorption coefficient of composites were measured in two conditions: without air gap and with air gap (10, 20, 30 mm). The sound absorption coefficient for testing without air gap was less than 0.5. Introducing an air gap improved the sound absorption coefficient of all composites. Hence, hybrid kenaf/bamboo composites exhibited less void content, as well as improved tensile, vibration and acoustic properties.
    Matched MeSH terms: Epoxy Resins
  6. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2015 Jul 29;8(8):4790-4804.
    PMID: 28793472 DOI: 10.3390/ma8084790
    The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
    Matched MeSH terms: Epoxy Resins
  7. Yap WY, Che Ab Aziz ZA, Azami NH, Al-Haddad AY, Khan AA
    Med Princ Pract, 2017;26(5):464-469.
    PMID: 28934753 DOI: 10.1159/000481623
    OBJECTIVE: To evaluate the push-out bond strength and failure modes of different sealers/obturation systems to intraradicular dentin at 2 weeks and 3 months after obturation compared to AH Plus®/gutta-percha.

    MATERIALS AND METHODS: A total of 180 root slices from 60 single-canal anterior teeth were prepared and assigned to 5 experimental groups (n = 36 in each group), designated as G1 (AH Plus®/gutta-percha), G2 (TotalFill BC™ sealer/BC-coated gutta-percha), G3 (TotalFill BC™ sealer/gutta-percha), G4 (EndoREZ® sealer/EndoREZ®-coated gutta-percha), and G5 (EndoREZ® sealer/gutta-percha). Push-out bond strengths of 18 root slices in each group were assessed at 2 weeks and the other 18 at 3 months after obturation using a universal testing machine. Data were analyzed using repeated measures ANOVA. An independent t test was used to compare the mean push-out bond strength for each group at 2 weeks and 3 months after obturation.

    RESULTS: The mean push-out bond strengths of G4 and G5 were significantly lower than those of G1, G2, and G3 (p < 0.05) at both 2 weeks (G1: 1.46 ± 0.29 MPa, G2: 1.74 ± 0.43 MPa, G3: 1.74 ± 0.43 MPa, G4: 0.66 ± 0.31 MPa, G5: 0.74 ± 0.47 MPa) and 3 months after obturation (G1: 1.70 ± 1.05 MPa, G2: 3.69 ± 1.20 MPa, G3: 2.84 ± 0.83 MPa, G4: 0.14 ± 0.05 MPa, G5: 0.24 ± 0.10 MPa). The mean push-out bond strengths of G2 (3.69 ± 1.20 MPa) and G3 (2.84 ± 0.83 MPa) were higher at 3 months compared to 2 weeks after obturation (G2: 1.74 ± 0.43 MPa, G3: 1.33 ± 0.29 MPa).

    CONCLUSION: The TotalFill BC™ obturation system (G2) and the TotalFill BC™ sealer/gutta-percha (G3) showed comparable bond strength to AH Plus®. Their bond strength increased over time, whereas the EndoREZ® obturation system (G4) and EndoREZ sealer (G5) had low push-out bond strength which decreased over time.

    Matched MeSH terms: Epoxy Resins/chemistry
  8. Chew ST, Eshak Z, Al-Haddad A
    Microsc Res Tech, 2023 Jul;86(7):754-761.
    PMID: 37078493 DOI: 10.1002/jemt.24323
    To assess the interfacial adaptation and penetration depth of three different bioceramic-based sealers (CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG) compared to an epoxy resin-based sealer (AH Plus) in oval root canals. Fourty extracted single-rooted mandibular premolar with oval canal were prepared and randomly allocated according to the obturation into; CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG and AH Plus. The roots were sectioned at 3, 6 and 9 mm from the apex. The sealer adaptation and the penetration depth were evaluated under confocal laser scanning microscope. One-way ANOVA and Repeated measure ANOVA were used to statistically analyze the data. Nishika Canal Sealer BG showed significantly higher sealer adaptation than EndoSeal MTA (P 
    Matched MeSH terms: Epoxy Resins
  9. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
    Matched MeSH terms: Epoxy Resins/chemistry*
  10. Lin GSS, Ghani NRNA, Noorani TY, Ismail NH, Mamat N
    Odontology, 2021 Jan;109(1):149-156.
    PMID: 32623538 DOI: 10.1007/s10266-020-00535-7
    To compare the dislodgement resistance and the adhesive pattern of four different endodontic sealers to root dentine walls. Ninety lower premolars were assigned to five groups (n = 18), Group 1: no sealer (control); Group 2: EndoRez (ERZ); Group 3: Sealapex (SPX); Group 4: EndoSeal MTA (ESA) and Group 5: BioRoot RCS (BRS). They were instrumented up to size 30 taper 0.06 and obturated using single cone technique with matched-taper gutta-percha cones and one of the mentioned sealers. Six teeth from each group were then randomly subjected to 100, 1000 and 10,000 thermocycles, respectively. 1 mm slice of mid root region, measuring 6 mm from the apical foramen was prepared and subjected to push-out test under a Universal Testing Machine. Adhesive patterns of sealers were assessed using a stereomicroscope at 20 × magnification and classified using a new system. Statistical analyses were performed using two-way ANOVA, complemented by Tukey HSD and Chi-square tests. ESA and BRS showed significantly higher (p  0.05) at 100, 1000 and 10,000 thermocycles, respectively. Both ESA and BRS exhibited a significant higher rate (p 
    Matched MeSH terms: Epoxy Resins
  11. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Epoxy Resins
  12. Mohd. Sapuan Salit, Mohamed Abd. Rahman, Khalina Abdan
    MyJurnal
    Vinyl esters combine the best of polyesters and epoxies in terms of properties and processing. Without
    complicating presence of reinforcing fibres, this study investigated the effects of catalyst amount, preheating time, molding temperature, and pressure on flexural and water absorption properties of cast vinyl ester (VE) using a factorial experiment. Longer preheating time enhanced the stiffness of VE, while higher molding pressure reduced the flexural modulus. All the four factors did not affect the flexural strength and elongation at the break of molded VE significantly. Using a high molding pressure also caused molded VE to have higher water absorption for a long water exposure period. Meanwhile, greater water absorption at bigger amount of catalyst and higher preheating temperature indicate possible interactions between these factors. The results suggest possible negative effects of high molding pressure through the increase in the network of micro-cracks, and thus lowering the integrity of cast VE sheets. Judicious selection of the process parameters was required in order to obtain good quality molded VE sheets and by extension fibre-reinforced VE composites. Molded VE-unsaturated polyester (UP) blend is a significantly different material which is 1.49 times stronger, 2.38 times more flexible, but it is 0.69 less stiff than neat VE and with significantly higher water absorption. The results obtained warrant for a further investigation in process optimization of VE molding and the use of VE-UP blend as a matrix for natural fibre-reinforced composites.
    Matched MeSH terms: Epoxy Resins
  13. Aidah Jumahat, Napisah Sapiai, Eliya Farah Hana Mohd Kamal
    MyJurnal
    This paper investigates the effect of acid and silane treatment of Carbon Nanotubes (CNT) on wear properties of epoxy polymer composite. The wear test done was based on ASTM D3389 standard using the Abrasive Wear Tester (TR 600). Characterisation analysis was also done using Transmission Electron Microscopy (TEM) in order to study the dispersion of the CNT inside the epoxy matrix. When untreated CNT was added to the epoxy with amounts of 0.5, 0.75 and 1.0 wt%, the wear rates did not improve except for 0.5 wt% CNT filled epoxy. This was due to the lack of dispersion which causes larger chunks of material being dug out, thus contributing to a higher mass loss and wear rate. When treated with acid and silane, 0.75 wt% and 1.0 wt% CNT filled epoxy composites showed improvement. The TEM images of 0.5 wt%, 0.75 wt% and 1.0 wt% PCNT filled epoxy supported the claim of the lack of dispersion of PCNT inside the epoxy.
    Matched MeSH terms: Epoxy Resins
  14. Aidah Jumahat, Muhamad Faris Syafiq Khalid, Zuraidah Salleh, Mohammad Jawaid
    MyJurnal
    This paper presents a study on the effect of Arenga Pinnata fibre volume fraction on the tensile and compressive properties of Arenga Pinnata fibre reinforced epoxy composite (APREC). The composites were produced using four different Arenga Pinnata fibre volume contents, which were 10vol%, 15vol%, 20vol%, and 25vol%, in unidirectional (UD) fibre alignment. Tensile and compression tests were performed on all APREC specimens in order to investigate the effect of fibre volume fraction on modulus of elasticity, strength and strain to failure. The morphological structure of fractured specimens was observed using scanning electron microscopy (SEM) in order to evaluate the fracture mechanisms involved when the specimens were subjected to tensile or compressive loading. The results indicated that the higher the amount of Arenga Pinnata fibres, the higher the stiffness of the composites. This is shown by the increment of tensile and compressive modulus of the specimens when the fibre volume content was increased. Tensile modulus increased up to 180% when 25vol% Arenga Pinnata fibre was used in APREC compared to Pure Epoxy specimen. It can also be observed that the tensile strength of the specimens increased 28% from 53.820 MPa (for Pure Epoxy) to 68.692 MPa (for Epoxy with 25vol% APREC addition). Meanwhile, compressive modulus and strength increased up to 3.24% and 9.17%, respectively. These results suggest that the addition of Arenga Pinnata fibres significantly improved the tensile and compressive properties of APREC.
    Matched MeSH terms: Epoxy Resins
  15. Norazean Shaari, Aidah Jumahat
    MyJurnal
    The effects of hole size on open hole tensile properties of Kevlar-glass fibre hybrid composite laminates were thoroughly investigated in this work. Woven Kevlar/glass fibre epoxy composite laminates were fabricated using hand lay-up and vacuum bagging technique. Specimens of five different hole size (1 mm, 4 mm, 6 mm, 8 mm and 12 mm) were carefully prepared before the tensile test was performed according to ASTM D5766. Results indicated that hybridizing Kevlar to glass fibres improved tensile strength and failure strain of hybrid composite specimen. In addition, increasing the hole size reduced strength retention of the hybrid specimen from 96% for 1 mm hole size to 62% and 44% for 6 mm and 12 mm, respectively. Fractography analysis showed that several types of failure mechanisms were observed such as brittle failure, ductile failure, fibre breakage, delamination and fibre-matrix splitting. It is concluded that as hole size increased, failure behaviour changed from a matrix dominated failure mode to a fibre-dominated failure mode.
    Matched MeSH terms: Epoxy Resins
  16. Zin, M.H., Abdan, K., Norizan, M.N., Mazlan, N.
    MyJurnal
    The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
    Matched MeSH terms: Epoxy Resins
  17. Muhamad Hellmy Hussin
    MyJurnal
    This is a review of studies on various types of paper-based epoxy composites currently being designed and developed for technological use. The concept of designing composite materials is very significant for small to large industry and it is important where initiation of repairing work is now being considered for engineering applications. This composite material is of interest due to its advantages compared with others, including low environmental effects and low cost for a wide range of works. This review aims to provide an overview of morphological, physical and mechanical properties of various paper sheetsbased epoxy composites and details of achievements made. From this approach, this paper also presents the preliminary study of SEM results of paper sheets-based epoxy composites designed for repairing work applications. It has been found that a well-arranged laminated paper sheet layers could help the bond strength with epoxy matrix. Thus, this paper sheet-based epoxy composite can be considered as an easiest way, cheap and biodegradable that can be used for various small repairing works in structural and automotive applications.
    Matched MeSH terms: Epoxy Resins
  18. Bajuri, F., Mazlan, N., Ishak, M.R.
    MyJurnal
    Kenaf natural fibre is used as a sustainable form of material to reinforce polymeric composite. However, natural fibres usually do not perform as well as synthetic fibres. Silica nanoparticle is a material with high surface area and its high interfacial interaction with the matrix results in its improvement. In this research, silica nanoparticles were introduced into epoxy resin as a filler material to improve the mechanical properties of the kenaf-reinforced epoxy. They were dispersed into the epoxy using a homogeniser at 3000 rpm for 10 minutes. The composites were fabricated by spreading the silica filled epoxy evenly onto the kenaf mat before hot pressing the resin wet kenaf mat. The results show for flexural properties, composites with higher fibre and silica volume content generally had better properties with specimen 601 (60 vol% kenaf and1 vol% silica) having the highest strength at 68.9 MPa. Compressive properties were erratic with specimen 201 (20 vol% kenaf and 1 vol% silica) having the highest strength at 53.6 MPa.
    Matched MeSH terms: Epoxy Resins
  19. Chai Hua, T., Norkhairunnisa, M.
    MyJurnal
    This research investigates the strength of kenaf or epoxy composite filled with mesoporous silica and
    studies the hybrid effects between mesoporous silica or kenaf in epoxy matrix. The volume of kenaf
    woven mat is maintained constantly at 7.2vol%, whereas proportion of epoxy is varied with inclusion of
    mesoporous silica and silicon, keeping constant the volume of the composite at 67.5cm3. The proportion
    of mesoporous silica is altered from 0.5vol%, 1.0vol%, 3.0vol% and 5.0vol%, while silicon is kept
    constant at 3.0vol%. A total of 11 specimens were produced, each with its distinctive composition and
    mechanical strengths. Variation of fillers composition affects the mechanical strengths of the composite.
    SEM analysis shows that epoxy bonds well with silicon, kenaf and mesoporous silica. Some de-bonding
    among the components is observed within the composite although there is also some tearing of fibres and
    impregnation of epoxy within fibre, proving that the components have good interaction and do not act
    individually. Flexural test shows that mesoporous silica improves the flexural strength of the composite,
    where the highest value is 35.14MPa, obtained at 5.0vol% Mesoporous Silica in Kenaf/Epoxy (SiaK/
    Ep). It also improves the flexural modulus, where the highest value is 1569.48MPa, obtained at 3.0vol%
    SiaK/Ep. DMA result reveals that adding mesoporous silica increases the Tg of the composite produced.
    Highest Tg is obtained at 0.5vol% Mesoporous Silica in Kenaf/Epoxy modofied Silicon (SiaK/Ep-Si)
    with the value of 87.54°C.
    Matched MeSH terms: Epoxy Resins
  20. Karobari MI, Batul R, Snigdha NTS, Al-Rawas M, Noorani TY
    PLoS One, 2023;18(11):e0294076.
    PMID: 37956149 DOI: 10.1371/journal.pone.0294076
    INTRODUCTION: Root canal sealing materials play a crucial role in an endodontic procedure by forming a bond between the dentinal walls and the gutta-percha. The current study aims to analyse the dentinal tubule penetration and adhesive pattern, including the push-out bond strength of six commercially available root canal sealers.

    METHODOLOGY: Eighty-four mandibular first premolars were split into seven groups (and n = 12), Group 1: Dia-Root, Group 2: One-Fil, Group 3: BioRoot RCS, Group 4: AH Plus, Group 5: CeraSeal, Group 6: iRoot SP, Group 7: GP without sealer (control). Two groups were made, one for dentinal tubule penetration and the other for push-out bond strength; the total sample size was one hundred sixty-eight. Root canal treatment was performed using a method called the crown down technique, and for obturation, the single cone technique was used. A confocal laser scanning microscope (Leica, Microsystem Heidel GmbH, Version 2.00 build 0585, Germany) was used to evaluate dentinal tubule penetration, and Universal Testing Machine was utilised to measure the push-out bond strength (Shimadzu, Japan) using a plunger size of 0.4 mm and speed of 1mm/min. Finally, the adhesive pattern of the sealers was analysed by HIROX digital microscope (KH-7700). Statistical analysis was carried out by a one-way Anova test, Dunnet's T3 test, and Chi-square test.

    RESULTS: Highest dentinal tubule penetration was noticed with One-Fil (p<0.05), followed by iRoot SP, CeraSeal, AH Plus, Dia-Root also, the most negligible value was recorded for BioRoot RCS. Meanwhile, BioRoot RCS (p<0.05) demonstrated the greater value of mean push-out bond strength, followed by One-fil, iRoot SP, CeraSeal, AH Plus and Dia-Root. Regarding adhesive pattern, most of the samples were classified as type 3 and type 4 which implies greater sealing ability and better adherence to the dentinal wall. However, BioRoot RCS revealed the most type 4 (p<0.05), followed by AH Plus, One-Fil, CeraSeal and Dia-Root.

    CONCLUSION: The highest dentinal tubule penetration was shown by One-Fil compared to other groups. Meanwhile, BioRoot RCS had greater push-out bond strength and more adhesive pattern than other tested materials.

    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links