Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Rahman SHBA, Irawan S, Shafiq N, Rajeswary R
    Heliyon, 2020 Feb;6(2):e03478.
    PMID: 32140594 DOI: 10.1016/j.heliyon.2020.e03478
    In selecting the binder composition for oil well application, its stability is an important design parameter. This paper presents the results of an experimental study conducted for comparing the linear expansion characteristics of geopolymer cement with the traditionally used ASTM Class G cement system. The expansion test was done in a water bath at 60 °C subjected to different curing intervals. The linear expansion of a cement system defines as the dimensional changes occur in the system, which is sometimes required to avoid the cement shrinkage during the hydration phase. In the case when the desired level of expansion is not achieved in the system, then the commercially available expandable materials are added in the class G cement system that enables the system to expand to the desired level. Shrinkage in the cementing system causes the formation of a microannulus or induces a gap that may allow the migration of fluid, hence the integrity of the system could be lost. This experimental study has revealed that the geopolymer cement tends to expand 0.15%-0.2% without the addition of any admixture, whereas the ASTM Class G cement has shown a lower value of linear expansion, which was obtained less than 0.1% after 18 days of curing. In the case of Class G cement, the addition of expandable material helped to increase the expansion; in the case of a geopolymer system, the additive has further accelerated the expansion.
    Matched MeSH terms: Glass Ionomer Cements
  2. Mahshim N, Reza F, Omar NS
    J Conserv Dent, 2013 Jul;16(4):331-5.
    PMID: 23956536 DOI: 10.4103/0972-0707.114364
    To evaluate physical properties and cytotoxicity of pure gypsum-based (pure-GYP) and experimental gypsum-based biomaterials mixed with polyacrylic acid (Gyp-PA). The results were compared with calcium hydroxide (CH) and glass ionomer cement (GIC) for application as base/liner materials.
    Matched MeSH terms: Glass Ionomer Cements
  3. Pai S, Bhat V, Patil V, Naik N, Awasthi S, Nayak N
    J Int Soc Prev Community Dent, 2020 06 15;10(3):279-285.
    PMID: 32802773 DOI: 10.4103/jispcd.JISPCD_75_20
    Aim: Adhesive restoration does not depend primarily on the configuration of the shape of the cavity. Under varying loading conditions, it is essential to know the stress concentration and load transfer mechanism for distinct cavity shapes. The aim of this study was to evaluate and compare the biomechanical characteristics of various cavity shapes, namely oval, elliptical, trapezoidal, and rectangular shapes of class V cavities on mandibular premolars restored with amalgam, glass ionomer cement, and Cention N using three-dimensional (3D) finite element analysis.

    Materials and Methods: A 3D prototype of a mandibular premolar was generated by Digital Imaging and Communications in Medicine (DICOM) images obtained from the cone beam computed tomography and imported to 3D modeling software tool, SpaceClaim. The four distinct load magnitudes of 100, 150, 200, and 250N were applied as a pressure load perpendicular to the lingual plane of the lingual cusp of the occlusal surface (normal load) and at 45° to same (oblique load). The stress distribution patterns and the maximum von Mises stresses were analyzed and compared.

    Results: The occlusal stresses were distributed from the force loading point in an approximate actinomorphic pattern, and when the force load was close to the margin, the stress was much greater.

    Conclusion: Ovoid cavity showed lesser stress concentration and deformation for each of the tested restorative material.

    Matched MeSH terms: Glass Ionomer Cements
  4. Wei Chong B, Othman R, Jaya RP, Shu Ing D, Li X, Wan Ibrahim MH, et al.
    Materials (Basel), 2021 Mar 28;14(7).
    PMID: 33800634 DOI: 10.3390/ma14071658
    Image analysis techniques are gaining popularity in the studies of civil engineering materials. However, the current established image analysis methods often require advanced machinery and strict image acquisition procedures which may be challenging in actual construction practices. In this study, we develop a simplified image analysis technique that uses images with only a digital camera and does not have a strict image acquisition regime. Mortar with 10%, 20%, 30%, and 40% pozzolanic material as cement replacement are prepared for the study. The properties of mortar are evaluated with flow table test, compressive strength test, water absorption test, and surface porosity based on the proposed image analysis technique. The experimental results show that mortar specimens with 20% processed spent bleaching earth (PSBE) achieve the highest 28-day compressive strength and lowest water absorption. The quantified image analysis results show accurate representation of mortar quality with 20% PSBE mortar having the lowest porosity. The regression analysis found strong correlations between all experimental data and the compressive strength. Hence, the developed technique is verified to be feasible as supplementary mortar properties for the study of mortar with pozzolanic material.
    Matched MeSH terms: Glass Ionomer Cements
  5. Alhajj MN, Salim NS, Johari Y, Syahrizal M, Abdul-Muttlib NA, Ariffin Z
    Acta Stomatol Croat, 2020 Sep;54(3):263-272.
    PMID: 33132389 DOI: 10.15644/asc54/3/4
    Objective: Endodontically treated teeth may require posts for retaining the core and replacing the coronal structures that have been lost. The objective of this study was to evaluate and compare the push-out bond strength between different types of post cemented with different types of luting cement at different types of root level.

    Materials and Methods: In this in-vitro study, a total of 48 single-rooted permanent human teeth were decoronated, and the roots were treated endodontically. Following post space preparation, the sample was divided into four groups (n= 12 each) based on the types of post and cement. Two different types of post [GC everStick®POST (ES) and Parapost® Fiber LuxTM (PF)], and two different types of cement [G-CEMTM (G), and RelyXTM Unicem (R)] were used according to the manufacturer's instructions. All roots were sectioned at the coronal and middle thirds with a thickness of 3±0.1mm. The Push-out bond strength (PBS) test was performed using a universal testing machine at a cross-head speed of 0.5mm/ min. The bond strength values were recorded, and the data were analyzed using the SPSS program. Apart from descriptive statistics, three-way ANOVA was used for the interaction of the independent variables (post, cement, and root level). For differences between the groups, the Mann-Whitney U test was used. A P-value of less than 0.05 was considered significant for all analyses.

    Results: Push-out bond strength of samples at the middle level (11.38±10.31 MPa), with PF posts (11.18±9.98 MPa), and of those luted with RelyXTM Unicem cement (13.26±8.73 MPa) was higher than that of their counterparts. The PBS means of RelyXTM Unicem cement at both root levels were much higher than PBS means of G-CEMTM cement. Three-way ANOVA test revealed a significant effect for each variable with a higher effect of cement (Sum of Squares= 1310.690; P< 0.001). No significant difference (P= 0.153) was found between the coronal and middle parts and between ES and PF posts (P= 0.058). However, a highly significant difference (P< 0.001) was found between RelyXTM Unicem and G-CEMTM cements.

    Conclusion: The type of cement had a significant effect on push-out bond strength with RelyXTM Unicem which had higher values than G-CEMTM. However, the type of post and root level had no significant effect on PBS, although Parapost® Fiber LuxTM and middle root level had higher values than their counterparts.

    Matched MeSH terms: Glass Ionomer Cements
  6. Murali G, Amran M, Fediuk R, Vatin N, Raman SN, Maithreyi G, et al.
    Materials (Basel), 2020 Dec 11;13(24).
    PMID: 33322254 DOI: 10.3390/ma13245648
    Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.
    Matched MeSH terms: Glass Ionomer Cements
  7. NUR FIKRIAH HASHIM, NURAQILAH MOHD ZAINAL, NURAIN JAMIL, NURUL NASUHA MOHD NOR, SURIANI MAT JUSOH
    MyJurnal
    Nowadays, Kenaf fiber is sustainably useful in marine structures and has become one of the materials that may be high in demand as it is light, biodegradable and environmental friendly. This study investigates the effect of fiber percentage on compressive strength of fiber reinforced concrete (FRC) and the relationship between compressive strength and time of FRC immersion in seawater. FRC concrete cubes were prepared using four different percentage of fiber (0%, 1.5%, 3.0% and 4.5%). These FRC were immersed in seawater for 7, 14 and 21 days for three consecutive weeks. Based on the experiment, it was found that there was improvement in compressive strength of FRC when compared to plain cement concrete. The results showedthat 3.0% of KF to cement matrix concrete determined the highest compressive strength of 205.43 Pa while 0% of KF fiber to cement concrete matrix (control specimen) showed the lowest compressive strength of 158.28 Pa. Also the addition of Kenaf fiber to cement concrete decreased the seawater absorption more than concrete with absolutely 0% of KF fiber to cement concrete (control specimen). In conclusion, the results did show significant improvement and a consistent trend on strength with the addition of FRC. This study also revealed that the percentage of water absorption was on the increase for 0, 7 and 14 days and become constant after day 21. This is due to manufacturing defects that occurred which block the water from entering the material and making the material absorb less water.
    Matched MeSH terms: Glass Ionomer Cements
  8. Sulaiman, E., Yeo, Y.M., Chong, Y.T.
    Ann Dent, 2007;14(1):39-45.
    MyJurnal
    Purpose of the study: The objective of this study was to investigate the flexural strengths of five commercially available tooth-coloured restorative materials – Alpha-Dent (composite resin, Dental Technologies Inc.), Solare Anterior (composite resin, GC), F2000 (polyacid-modified composite resin, 3M), Beautifil (giomer, Shofu) and Fuji II LC (resin- modified glass ionomer cement, GC] using the ISO 4049 specifications. Materials and Method: Ten specimens of (25±0.2)mm x (2±0.1)mm x (2±0.1)mm from each material were prepared at 22-23ºC using a customized metal mould. After light polymerization, the specimens were stored in distilled water at 37ºC for 24 hours. The specimens were subsequently blotted dry, measured and subjected to flexural testing using an Instron Universal Testing Machine with a crosshead speed of 0.5mm/min. The flexural strengths were calculated from the maximum load exerted on the specimens. Data were analysed using one way ANOVA and scheffe’s post-hoc multiple comparison tests at a significance level of 0.05.Results: The results showed that the mean flexural strengths of Beautifil, Solare Anterior and Alpha-Dent were above 80 MPa and those of F2000 and Fuji II LC were below 80 MPa. The results of one-way ANOVA and Scheffe’s post-host tests demonstrated that Beautifil had significantly higher mean flexural strength compared to Fuji II LC, F2000 and Alpha-Dent (P
    Matched MeSH terms: Glass Ionomer Cements
  9. Suhaida Sabdi, Wan Zaripah Wan Bakar, Adam Husein
    MyJurnal
    Some restorative materials are susceptible to erosion but whether it also causes microleakage is still questionable. The aim of this study was to assess the microleakage of few restorative materials after immersion in acidic solution. Standardized ‘U’ shaped cavity of 4mm diameter and 2mm depth were prepared on buccal or lingual surface of 52 human premolar and molar teeth. The teeth were divided into 4 groups which contains 13 samples and 3 controls for each and were restored either with Filtek Z250 (Group 1), Fuji IX (Group 2), Fuji II LC (Group 3), or Silverfill amalgam (Group 4).
    All surfaces were painted with nail varnish leaving only 2mm of tooth structure surrounding the restoration before the study samples were immersed in acidic solution, lemon juice (pH 2.74) and control samples in deionised distilled water for 24 hours. Surface photos for erosion were taken before immersion in methylene blue for 7 days. After sectioning, the assessment of dye penetration was done using Leica Imaging System DMLM (Germany). Photos showed that Fuji IX demonstrated severe erosion but no obvious changes were seen on other materials. Kruskal-Wallis test indicated that microleakage between all four groups were statistically significant. The most significant difference was between Filtek Z250 and Fuji IX (p
    Matched MeSH terms: Glass Ionomer Cements
  10. Al-Makramani BMA, Razak AAA, Abu-Hassan MI, Al-Sanabani FA, Albakri FM
    Open Access Maced J Med Sci, 2018 Mar 15;6(3):548-553.
    PMID: 29610618 DOI: 10.3889/oamjms.2018.111
    BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.

    AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.

    MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.

    RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).

    CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.

    Matched MeSH terms: Glass Ionomer Cements
  11. Nor Umairah Abd Rahim, Mohd Fadzil bin Arshad
    MyJurnal
    Ordinary Portland Cement (OPC) is widely used by the construction industry. Research to find the precise proportion of cement replacement material which can be used to produce a product called Ternary Blended Cement (TBC) is not new. The objective of this study is to determine the effect of POFA and SF as TBC on the heat of hydration and compressive strength of mortar. Before producing TBC, specimens using BBC is required. Mix design proportion for POFA and SF are 5%, 10%, 15%, and 20%. Mix design proportion TBC are chose from the highest compressive strength value achieved at 7 days of curing. This research found the heat of hydration of TBC containing 20% POFA and 5% SF is high in the beginning to drop at the end of hydration process in addition to producing lower compressive strength.
    Matched MeSH terms: Glass Ionomer Cements
  12. Azlisham, N.A.F., Abdul Rahman, F.S., Mohamad, D.
    MyJurnal
    The objective of the present study is to evaluate the effect of incorporation of 3- acetylcoumarin (3-AC), an antibacterial agent, on the mechanical and surface morphology of glass ionomer cement (GIC). A conventional GIC, Fuji II LC, was used as a control. 3-AC was incorporated into GIC during its manipulation at percentage of 2% and 5% (wt/wt). Flexural strength of the specimens were analysed using Shimadzu AGX-Plus while morphological evaluation of the specimens were observed using Scanning Electron Microscope (SEM). Oneway analysis (ANOVA) with post-hoc Bonferroni multiple-range test was used to determine the significant differences among the groups. Statistically, the incorporation of 2% (wt/wt) of 3-AC into GIC showed a significantly lower flexural strength (p
    Matched MeSH terms: Glass Ionomer Cements
  13. Al-Khadim Aws H., Abdullah H., Al-Ani Sarah T.
    MyJurnal
    Introduction: The purpose of this in vitro study was to evaluate the effect of thermocycling on the compressive strength of selected luting cements. Material and methods: 5 types of luting cements were tested. A total of thirty cylindrical specimens measuring 6mm in height and 4mm in diameter were prepared for each type of cement which were then divided into two groups ie Group 1: Exposure, and Group 2: Control. Both groups were stored in distilled water at 37°C for 24 hours. Group 1 was subjected to 500 cycles in a thermocycling baths of 5ºC and 55ºC with 20 seconds in each bath. Group 2 was not exposed to thermocycling procedure. The compressive strength for each cement type was determined by using a universal testing machine. Results: Resin adhesive cement had the highest compressive strength; followed by conventional glass ionomer cement (GIC) whilst resin modified GIC was the least. Thermocycling had no significant effect on the compressive strength of RelyXTM ARC and Fuji I (p>0.05), but a significant effect on Fuji I CAPSULE, Fuji CEM, Fuji Plus CAPSLUE (p
    Matched MeSH terms: Glass Ionomer Cements
  14. Zalina Laili, Muhamad Samudi Yasir, Mohd Abdul Wahab Yusof
    Sains Malaysiana, 2017;46:1617-1623.
    The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was
    investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35
    to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar
    were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix
    was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the
    w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix
    showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins
    matrix increased after two weeks in water immersion test.
    Matched MeSH terms: Glass Ionomer Cements
  15. Mohammad Razaul Karim, Sumiani Yusoff, Hashim Abdul Razak, Faisal I. Chowdhury, Hossain Zabed
    Sains Malaysiana, 2018;47:523-530.
    Technical benefit of incorporation of Palm Oil Clinker (POC) in cement-based applications has been proven in recent
    studies. The aim of this work was to assess the heavy metal leaching behavior to ensure environmental safety of using
    POC in cement-based applications. The chemical composition, morphology, total organic carbon (TOC) and mineralogy
    were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate chemical reagents for complete digestion.
    HNO3
    , HF and HClO4
    were used for digestion of POC to measure heavy metal content using ICP-MS. The chemical reagents
    CH3
    COOH, NH2
    OH-HCl, H2
    O2
    +CH3
    COONH4
    and HF+HNO3
    +HCl were used for extraction of acid soluble, reducible,
    oxidizable and residual fractions of heavy metals in POC, respectively. The leaching toxicity of the POC was investigated
    by the USEPA 1311 TCLP method. The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and Pb with
    levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and 1.76 mg/kg, respectively, in POC. The leaching value
    in mg/L of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well
    below the standard limit of risk. Risk assessment code (RAC) analysis confirms the safe incorporation of POC in cementbased
    applications.
    Matched MeSH terms: Glass Ionomer Cements
  16. Tang X, Yang Y, Xie Y
    Sains Malaysiana, 2016;45:1543-1550.
    The main objective of this work was to investigate the influence of waterborne epoxy resin emulsion (WER) on the physical properties of oil well cement slurries. Cement slurries containing 5%, 10% and 15% of WER bwoc were compared with WER-free slurries. The rheological behavior was carried out according to API standard. Uniaxial compressive strength and shear bond strength of cement stone were evaluated at the ages of 24, 48 and 72 h. The experimental results illustrate that the addition of WER does not alter the rheological behavior. The addition of WER has increased the shear bond strength almost 52% at 24 h of aging for 10% WER bwoc when compared with unmodified slurry. The enhancement on shear bond strength was attributed to the mechanical anchoring and resin film forming at the interface
    Matched MeSH terms: Glass Ionomer Cements
  17. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Contemp Dent Pract, 2008;9(2):33-40.
    PMID: 18264523
    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings.
    Matched MeSH terms: Glass Ionomer Cements*
  18. Ab-Ghani Z, Ngo H, McIntyre J
    Aust Dent J, 2007 Dec;52(4):276-81.
    PMID: 18265682
    BACKGROUND: There have been cononcerns about the dissolution of conventional glass ionomer cement (GIC) and its possible degradation when exposed to an acidic environment over time. The objective of this study was to investigate the effects of exposure of Fuji IX Fast to the simulated acidic aspects of the oral environment in terms of any change in the elemental composition of strontium (Sr), phosphorus (P), calcium (Ca) and fluorine (F) which resulted at the surface of this material.

    METHODS: Sixty-five cylindrical block of Fuji IX Fast were prepared using split moulds. The demineralizing solution was an acetate buffered demineralizing solution at pH 403. The remineralizing solution was a buffered solution containing 1.5 mM Ca, 0.9 mM P and 10 ppm F at pH 7. The blocks of Fuji IX Fast were subjected either to two-day alternating cycles of remineralization and demineralization for up to 24 days (test); 6 two-day cycles of demineralizing or remineralizing solution separately, or deionized distilled water alone (controls) or were left untreated (base line control). Mineral profiles of Ca, P, Sr and F within 100 microm of the material surface were assessed following 8, 16 and 24 days of treatment (test); 4, 8 or 12 days (controls) or for baseline control samples, using electron probe microanalysis (EPMA).

    RESULTS: There were significant changes in mineral profile in the test specimens in terms of Sr and Ca concentrations. A molecule for molecule exchange of these elements resulted between GIC and eluant solutions. Fluoride loss from the GIC occurredto the level comparable with uptake levels recorded in eluant solutions from previous studies. The ionic exchanges appeared to be the result of dissolution followed by an equilibrium-driven diffusion. These exchanges were superficial though substantial.

    CONCLUSIONS: Simulated exposure of Fuji IX to the oral environment resulted in an exchange of Ca from the bathing solutions into Fuji IX to replace any Sr which was lost to the GIC. Fluorine loss from the GIC followed previously described patterns. The possible clinical significance of this exchange was discussed.

    Matched MeSH terms: Glass Ionomer Cements/chemistry*
  19. Wan Bakar W, McIntyre J
    Aust Dent J, 2008 Sep;53(3):226-34.
    PMID: 18782366 DOI: 10.1111/j.1834-7819.2008.00053.x
    Erosive substances such as gastric acids, lemon juice and even the less erosive cola drinks have been extensively investigated for their destructive effects on enamel. However, their effects on the tooth-coloured restoratives has not been widely analysed. The objective of this study was to assess their effects on the more commonly used glass containing restorative materials in vitro.
    Matched MeSH terms: Glass Ionomer Cements*
  20. Sulong MZ, Aziz RA
    J Prosthet Dent, 1990 Mar;63(3):342-9.
    PMID: 2407832
    This is a review of the literature concerning wear related to the following materials used in dentistry: dental amalgam, composite resins, and glass-ionomer cements, as well as natural tooth substance. Discussions are included on both in vivo and in vitro studies in which various methods were used to help determine wear resistance.
    Matched MeSH terms: Glass Ionomer Cements*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links