Displaying publications 21 - 40 of 71 in total

Abstract:
Sort:
  1. Fakurazi S, Hairuszah I, Nanthini U
    Food Chem Toxicol, 2008 Aug;46(8):2611-5.
    PMID: 18514995 DOI: 10.1016/j.fct.2008.04.018
    Initiation of acetaminophen (APAP) toxicities is believed to be promoted by oxidative stress during the event of overdosage. The aim of the present study was to evaluate the hepatoprotective action of Moringa oleifera Lam (MO), an Asian plant of high medicinal value, against a single high dose of APAP. Groups of five male Sprague-Dawley rats were pre-administered with MO (200 and 800 mg/kg) prior to a single dose of APAP (3g/kg body weight; p.o). Silymarin was used as an established hepatoprotective drug against APAP induced liver injury. The hepatoprotective activity of MO extract was observed following significant histopathological analysis and reduction of the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in groups pretreated with MO compared to those treated with APAP alone. Meanwhile, the level of glutathione (GSH) was found to be restored in MO-treated animals compared to the groups treated with APAP alone. These observations were comparable to the group pretreated with silymarin prior to APAP administration. Group that was treated with APAP alone exhibited high level of transaminases and ALP activities besides reduction in the GSH level. The histological hepatocellular deterioration was also evidenced. The results from the present study suggested that the leaves of MO can prevent hepatic injuries from APAP induced through preventing the decline of glutathione level.
    Matched MeSH terms: Glutathione/metabolism*
  2. Shah MD, Iqbal M
    Food Chem Toxicol, 2010 Dec;48(12):3345-53.
    PMID: 20828599 DOI: 10.1016/j.fct.2010.09.003
    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl] phosphoro thioate), an organo-phosphate insecticide, has been used worldwide in agriculture and domestic for several years, which has led to a variety of negative effects in non target species including humans. However, its nephrotoxic effects and mechanism of action has not been fully elucidated so far. Therefore, the present study was aimed at evaluating the nephrotoxic effects of diazinon and its mechanism of action with special reference to its possible ROS generating potential in rats. Treatment of rats with diazinon significantly enhances renal lipid peroxidation which is accompanied by a decrease in the activities of renal antioxidant enzymes (e.g. catalase, glutathione peroxidise, glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione S-transferase) and depletion in the level of glutathione reduced. In contrast, the activities of renal γ-glutamyl transpeptidase and quinone reductase were increased. Parallel to these changes, diazinon treatment enhances renal damage as evidenced by sharp increase in blood urea nitrogen and serum creatinine. Additionally, the impairment of renal function corresponds histopathologically. In summary, our results indicate that diazinon treatment eventuates in decreased renal glutathione reduced, a fall in the activities of antioxidant enzymes including the enzymes involved in glutathione metabolism and excessive production of oxidants with concomitant renal damage, all of which are involved in the cascade of events leading to diazinon-mediated renal oxidative stress and toxicity. We concluded that in diazinon exposure, depletion of antioxidant enzymes is accompanied by induction of oxidative stress that might be beneficial in monitoring diazinon toxicity.
    Matched MeSH terms: Glutathione/metabolism
  3. Ansar S, Iqbal M, AlJameil N
    Hum Exp Toxicol, 2014 Dec;33(12):1209-16.
    PMID: 24596035 DOI: 10.1177/0960327114524237
    Ferric nitrilotriacetate (Fe-NTA) induces tissue necrosis as a result of lipid peroxidation (LPO) and oxidative damage that leads to high incidence of renal carcinomas. The present study was undertaken to evaluate the effect of diallyl sulphide (DAS) against Fe-NTA-induced nephrotoxicity. A total of 30 healthy male rats were randomly divided into 5 groups of 6 rats each: (1) control, (2) DAS (200 mg kg(-1)), (3) Fe-NTA (9 g Fe kg(-1)), (4) DAS (100 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)) and (5) DAS (200 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)). Fe-NTA + DAS-treated groups were given DAS for a period of 1 week before Fe-NTA administration. The intraperitoneal administration of Fe-NTA enhanced blood urea nitrogen and creatinine levels with reduction in levels of antioxidant enzymes. However, significant restoration of depleted renal glutathione and its dependent enzymes (glutathione reductase and glutathione-S-transferase) was observed in DAS pretreated groups. DAS also attenuated Fe-NTA-induced increase in LPO, hydrogen peroxide generation and protein carbonyl formation (p < 0.05). The results indicate that DAS may be beneficial in ameliorating the Fe-NTA-induced renal oxidative damage in rats.
    Matched MeSH terms: Glutathione/metabolism
  4. Koh PH, Mokhtar RA, Iqbal M
    Hum Exp Toxicol, 2012 Jan;31(1):81-91.
    PMID: 21508074 DOI: 10.1177/0960327111407226
    This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.
    Matched MeSH terms: Glutathione/metabolism
  5. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Mar;35(3):259-66.
    PMID: 25904316 DOI: 10.1177/0960327115583362
    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats.
    Matched MeSH terms: Glutathione/metabolism
  6. Tudave D, Radhakrishnan A, Chakravarthi S, Haleagrahara N
    Inflamm Res, 2011 Oct;60(10):897-907.
    PMID: 21633874 DOI: 10.1007/s00011-011-0349-y
    OBJECTIVES: The study investigated the effect of collagen-induced arthritis in Dark Agouti (DA) rats on the level of C-reactive protein and inflammatory cytokine tumour necrosis factor-alpha (TNF-α).

    SUBJECTS: Female Dark Agouti (DA) rats.

    METHODS: Three different dosages of (2 mg/kg of body weight, 3 mg/kg of body weight and 4 mg/kg of body weight) collagen and complete Freund's adjuvant suspension were tested. After 45 days, serum C-reactive protein, TNF-α, superoxide dismutase and total glutathione assays were done. Radiographic and histopathological changes in the joints were compared.

    RESULTS: All three groups showed signs of arthritic changes, confirmed by histopathological and radiographic changes. Severe arthritic changes were seen in the rats injected with 4 mg/kg of body weight of collagen. There was a significant increase in C-reactive protein, TNF-α, super oxide dismutase and total glutathione levels in the plasma in arthritis rats and the changes were more significant with 4 mg/kg of collagen.

    CONCLUSION: These results demonstrated that the optimal dose to inject to experimental animals in order to get server arthritic changes was 4 mg/kg of collagen with complete Freund's adjuvant suspension. Severe arthritis changes induced significant elevation in plasma C-reactive protein and TNF-α levels.

    Matched MeSH terms: Glutathione/metabolism
  7. Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S
    PMID: 31726798 DOI: 10.3390/ijerph16224445
    Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.
    Matched MeSH terms: Glutathione/metabolism
  8. Magalingam KB, Radhakrishnan A, Haleagrahara N
    Int J Mol Med, 2013 Jul;32(1):235-40.
    PMID: 23670213 DOI: 10.3892/ijmm.2013.1375
    Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
    Matched MeSH terms: Glutathione/metabolism
  9. Haleagrahara N, Varkkey J, Chakravarthi S
    Int J Mol Sci, 2011;12(10):7100-13.
    PMID: 22072938 DOI: 10.3390/ijms12107100
    The aim of the present study was to look into the possible protective effects of glycyrrhizic acid (GA) against isoproterenol-induced acute myocardial infarction in Sprague-Dawley rats. The effect of three doses of glycyrrhizic acid in response to isoproterenol (ISO)-induced changes in 8-isoprostane, lipid hydroperoxides, super oxide dismutase and total glutathione were evaluated. Male Sprague-Dawley rats were divided into control, ISO-control, glycyrrhizic acid alone (in three doses-5, 10 and 20 mg/kg BW) and ISO with glycyrrhizic acid (in three doses) groups. ISO was administered at 85 mg/kg BW at two consecutive days and glycyrrhizic acid was administered intraperitoneally for 14 days. There was a significant increase in 8-isoprostane (IP) and lipid hydroperoxide (LPO) level in ISO-control group. A significant decrease in total superoxide dismutase (SOD) and total glutathione (GSH) was seen with ISO-induced acute myocardial infarction. Treatment with GA significantly increased SOD and GSH levels and decreased myocardial LPO and IP levels. Histopathologically, severe myocardial necrosis and nuclear pyknosis and hypertrophy were seen in ISO-control group, which was significantly reduced with GA treatment. Gycyrrhizic acid treatment proved to be effective against isoproterenol-induced acute myocardial infarction in rats and GA acts as a powerful antioxidant and reduces the myocardial lipid hydroperoxide and 8-isoprostane level.
    Matched MeSH terms: Glutathione/metabolism
  10. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Int J Mol Sci, 2011;12(3):1888-907.
    PMID: 21673929 DOI: 10.3390/ijms12031888
    Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress.
    Matched MeSH terms: Glutathione/metabolism
  11. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:4115-29.
    PMID: 24204141 DOI: 10.2147/IJN.S50061
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.
    Matched MeSH terms: Glutathione/metabolism
  12. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K, et al.
    Int J Rheum Dis, 2019 Jul;22(7):1247-1254.
    PMID: 31155849 DOI: 10.1111/1756-185X.13602
    AIM: The purpose of our investigation is to evaluate the anti-arthritic potential of isolated rosmarinic acid from the rind of Punica granatum.

    METHOD: Rosmarinic acid was isolated by bioactivity-guided isolation from butanolic fraction of Punica granatum and acute toxicity of rosmarinic acid was carried out. The experiment was conducted at doses of 25 and 50 mg/kg, in Freund's complete adjuvant (FCA)-induced arthritic rats. Various parameters, that is arthritic score, paw volume, thickness of paw, hematological, antioxidant and inflammatory parameters such as glutathione (GSH), superoxide dismutase (SOD), malonaldehyde (MDA) and tumor necrosis factor-α (TNF-α) were also estimated.

    RESULTS: Rosmarinic acid significantly decreased the arthritic score, paw volume, joint diameter, white blood cell count and erythrocyte sedimentation rate. It also significantly increased body weight, hemoglobin and red blood cells. The significantly decreased levels of TNF-α were observed in treated groups as compared to arthritic control rats (P 

    Matched MeSH terms: Glutathione/metabolism
  13. Abdul Hamid Z, Budin SB, Wen Jie N, Hamid A, Husain K, Mohamed J
    J Zhejiang Univ Sci B, 2012 Mar;13(3):176-85.
    PMID: 22374609 DOI: 10.1631/jzus.B1100133
    Paracetamol (PCM) overdose can cause nephrotoxicity with oxidative stress as one of the possible mechanisms mediating the event. In this study, the effects of ethyl acetate extract of Zingiber zerumbet rhizome [200 mg per kg of body weight (mg/kg) and 400 mg/kg] on PCM-induced nephrotoxicity were examined. Rats were divided into five groups containing 10 rats each. The control group received distilled water while other groups were treated with extract alone (400 mg/kg), PCM alone (750 mg/kg), 750 mg/kg PCM+200 mg/kg extract (PCM+200-extract), and 750 mg/kg PCM+400 mg/kg extract (PCM+400-extract), respectively, for seven consecutive days. The Z. zerumbet extract was given intraperitoneally concurrent with oral administration of PCM. Treatment with Z. zerumbet extract at doses of 200 and 400 mg/kg prevented the PCM-induced nephrotoxicity and oxidative impairments of the kidney, as evidenced by a significantly reduced (P<0.05) level of plasma creatinine, plasma and renal malondialdehyde (MDA), plasma protein carbonyl, and renal advanced oxidation protein product (AOPP). Furthermore, both doses were also able to induce a significant increment (P<0.05) of plasma and renal levels of glutathione (GSH) and plasma superoxide dismutase (SOD) activity. The nephroprotective effects of Z. zerumbet extract were confirmed by a reduced intensity of renal cellular damage, as evidenced by histological findings. Moreover, Z. zerumbet extract administered at 400 mg/kg was found to show greater protective effects than that at 200 mg/kg. In conclusion, ethyl acetate extract of Z. zerumbet rhizome has a protective role against PCM-induced nephrotoxicity and the process is probably mediated through its antioxidant properties.
    Matched MeSH terms: Glutathione/metabolism
  14. Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114115.
    PMID: 33852947 DOI: 10.1016/j.jep.2021.114115
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant.

    AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.

    MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.

    RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.

    CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.

    Matched MeSH terms: Glutathione/metabolism
  15. Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R
    J Integr Med, 2019 Jan;17(1):66-70.
    PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002
    OBJECTIVE: This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats.

    METHODS: Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA.

    RESULTS: This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters.

    CONCLUSION: This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.

    Matched MeSH terms: Glutathione/metabolism
  16. Al-Qattan MNM, Mordi MN
    J Mol Model, 2023 Aug 16;29(9):281.
    PMID: 37584781 DOI: 10.1007/s00894-023-05650-0
    CONTEXT: Modulation of disease progression is frequently started by identifying biochemical pathway catalyzed by biomolecule that is prone to inhibition by small molecular weight ligands. Such ligands (leads) can be obtained from natural resources or synthetic libraries. However, de novo design based on fragments assembly and optimization is showing increasing success. Plasmodium falciparum parasite depends on glutathione-S-transferase (PfGST) in buffering oxidative heme as an approach to resist some antimalarials. Therefore, PfGST is considered an attractive target for drug development. In this research, fragment-based approaches were used to design molecules that can fit to glutathione (GSH) binding site (G-site) of PfGST.

    METHODS: The involved approaches build molecules from fragments that are either isosteric to GSH sub-moieties (ligand-based) or successfully docked to GSH binding sub-pockets (structure-based). Compared to reference GST inhibitor of S-hexyl GSH, ligands with improved rigidity, synthetic accessibility, and affinity to receptor were successfully designed. The method involves joining fragments to create ligands. The ligands were then explored using molecular docking, Cartesian coordinate's optimization, and simplified free energy determination as well as MD simulation and MMPBSA calculations. Several tools were used which include OPENEYE toolkit, Open Babel, Autodock Vina, Gromacs, and SwissParam server, and molecular mechanics force field of MMFF94 for optimization and CHARMM27 for MD simulation. In addition, in-house scripts written in Matlab were used to control fragments connection and automation of the tools.

    Matched MeSH terms: Glutathione/metabolism
  17. Wong DZ, Kadir HA, Lee CL, Goh BH
    J Nat Med, 2012 Jul;66(3):544-51.
    PMID: 22318341 DOI: 10.1007/s11418-011-0622-y
    Loranthus parasiticus, a Chinese folk medicine, has been widely used for the treatment of brain diseases, particularly in southwest China. Hence, the present neuroprotection model was designed to investigate its neuroprotective properties against H(2)O(2)-induced oxidative stress in NG108-15 cells. L. parasiticus aqueous fraction (LPAF), which was selected in the present study, had proved to be the most active fraction among the other tested extracts and fractions in our previous screening. The restoration of depleted intracellular glutathione (GSH), a major endogenous antioxidant, by LPAF was observed after H(2)O(2) insult. Pretreatment with LPAF substantially reduced the production of intracellular reactive oxygen species generated from H(2)O(2). Apoptotic features such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential were significantly attenuated by LPAF. In addition, cell cycle analysis revealed a prominent decrease in the H(2)O(2)-induced sub-G(1) population by LPAF. Moreover, apoptotic morphological analysis by DAPI nuclear staining demonstrated that NG108-15 cells treated with H(2)O(2) exhibited apoptotic features, while such changes were greatly reduced in cells pretreated with LPAF. Taken together, these findings confirmed that LPAF exerts marked neuroprotective activity, which raises the possibility of potential therapeutic application of LPAF for managing oxidative stress-related neurological disorders and supports the traditional use of L. parasiticus in treating brain-related diseases.
    Matched MeSH terms: Glutathione/metabolism
  18. Siew-Keah L, Sundaram A, Sirajudeen KN, Zakaria R, Singh HJ
    J Physiol Biochem, 2014 Mar;70(1):73-9.
    PMID: 23975651 DOI: 10.1007/s13105-013-0282-3
    Antenatal and postnatal environments are hypothesised to influence the development of hypertension. This study investigates the synergistic effect of cross-fostering and melatonin supplementation on the development of hypertension and renal glutathione system in spontaneously hypertensive rats (SHR). In one experiment, 1-day-old male SHR pups were fostered to either SHR (shr-SHR) or Wistar-Kyoto rats, (shr-WKY). In a concurrent experiment, SHR dams were given melatonin in drinking water (10 mg/kg body weight) from day 1 of pregnancy. Immediately following delivery, 1-day-old male pups were fostered either to SHR (Mel-shr-SHR) or WKY (Mel-shr-WKY) dams receiving melatonin supplementation until weaning on day 21. Upon weaning, melatonin supplementation was continued to these pups until the age of 16 weeks. Systolic blood pressures (SBP) were recorded at the age of 4, 6, 8, 12 and 16 weeks. Renal antioxidant activities were measured. Mean SBP of shr-WKY, Mel-shr-SHR and Mel-shr-WKY was significantly lower than that in shr-SHR until the age of 8 weeks. At 12 and 16 weeks of age, mean SBP of Mel-shr-WKY was lower than those in non-treated shr-SHR and shr-WKY pups but was not significantly different from that in Mel-shr-SHR. Renal glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were significantly higher in Mel-shr-SHR and Mel-shr-WKY at 16 weeks of age. It appears that combination of cross-fostering and melatonin supplementation exerts no synergistic effect on delaying the rise in blood pressure in SHR. The elevated GPx and GST activities are likely to be due to the effect of melatonin supplementation.
    Matched MeSH terms: Glutathione/metabolism*
  19. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: Glutathione/metabolism*
  20. Jahan MS, Nozulaidi M, Khairi M, Mat N
    J Plant Physiol, 2016 May 20;195:1-8.
    PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002
    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
    Matched MeSH terms: Glutathione/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links