Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Taha EM, Omar O, Yusoff WM, Hamid AA
    Annals of microbiology, 2010 Dec;60(4):615-622.
    PMID: 21125005
    Lipid biosynthesis and fatty acids composition of oleaginous zygomycetes, namely Cunninghamella bainieri 2A1, cultured in media with excess or limited nitrogen were quantitatively determined at different times of culture growth. Accumulation of lipids occurred even when the activity of NAD(+)-ICDH (β-Nicotinamide adenine dinucleotide-isocitrate dehydrogenase) was still detectable in both media. In C. bainieri 2A1, under nitrogen limitation, the ratio of lipids was around 35%, whereas in nitrogen excess medium (feeding media supplemented with ammonium tartarate), the lipid ratio decreased. The amount of this decrease depended on the level of ammonium tartarate in the media. The main findings in this paper were that C. bainieri 2A1 has the ability to accumulate lipid although nitrogen concentration detected inside the media and that NAD-ICDH was active in all culture periods. These results proved that the strain C. bainieri 2A1 has an alternative behavior in lipid biosynthesis that differs from yeast. According to the old hypotheses, yeasts could not accumulate lipid more than 10% when nitrogen was detected inside the media. Nitrogen-limited and excess media both contained the same fatty acids (palmitic acid, stearic acid, olic acid, linoleic acid and γ-linolenic acid), but at different concentrations. The C:N ratio was also studied and showed no effects on total lipid accumulation, but a significant effect on γ-linolenic acid concentration.
    Matched MeSH terms: Linoleic Acid
  2. Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R
    J Food Sci Technol, 2015 Oct;52(10):6623-30.
    PMID: 26396409 DOI: 10.1007/s13197-015-1737-z
    The seeds of Terminalia catappa from Malaysia were analyzed for their physicochemical properties. The following values were obtained: moisture 6.23 ± 0.09 %, ash 3.78 ± 0.04 %, lipid 54.68 ± 0.14 %, protein 17.66 ± 0.13 %, total dietary fibre 9.97 ± 0.08 %, carbohydrate 7.68 ± 0.06 %, reducing sugar 1.36 ± 0.16 %, starch 1.22 ± 0.15 %, caloric value 593.48 ± 0.24 %. Studies were also conducted on amino acid profile and free fatty acid composition of the seed oil. Results revealed that glutamic acid was the major essential amino acid while methionine and lysine were the limiting amino acids. The major saturated fatty acid was palmitic acid, while the main unsaturated fatty acid was oleic acid followed by linoleic acid. In addition, the seed was rich in sucrose and had trace amount of glucose and fructose. Briefly, the seed was high in proteins and lipids which are beneficial to human.
    Matched MeSH terms: Linoleic Acid
  3. Solati Z, Baharin BS
    J Food Sci Technol, 2015 Jun;52(6):3475-84.
    PMID: 26028729 DOI: 10.1007/s13197-014-1409-4
    Effect of supercritical CO2 extracted Nigella sativa L. seed extract (NE) on frying performance of sunflower oil and refined, bleached and deodorized (RBD) palm olein was investigated at concentrations of 1.2 % and 1.0 % respectively. Two frying systems containing 0 % N. sativa L. extract (Control) and 0.02 % butylated hydroxytoluene (BHT) were used for comparison. Physicochemical properties such as fatty acid composition (FAC), Peroxide Value (PV), Anisidine Value (AV), Totox Value (TV), Total Polar Content (TPC), C18:2/C16:0 ratio and viscosity of frying oils were determined during five consecutive days of frying. Results have shown that N. sativa L. extract was able to improve the oxidative stability of both frying oils during the frying process compared to control. The stabilizing effect of antioxidants were in the order of BHT > NE. RBD palm olein was found to be more stable than sunflower oil based on the ratio of linoleic acid (C18:2) to palmitic acid (C16:0) and fatty acid composition.
    Matched MeSH terms: Linoleic Acid
  4. Nur Afiqah Saparin, Mohd Muzamir Mahat, Muhd Fauzi Safian, Shahrul Hisham Zainal Ariffin, Nor Azah Mohamad Ali, Zaidah Zainal Ariffin
    Science Letters, 2020;14(1):62-67.
    MyJurnal
    The evolution of cosmetic products results in the growing demands for cosmetics that are preservatives free. Plant essential oils were found to be a promising antimicrobial and also antioxidant agent. In this study, Cymbopogon citratus (lemongrass), Laurus nobilis (bay leaf) and Backhousia citriodora (lemon myrtle) essential oils were selected and evaluated for their antimicrobial properties. It was found that Laurus nobilis exhibited strong antimicrobial activity against the selected bacteria Streptococcus saprophyticus (ATCC 49619), Streptococcus aureus (ATCC 22923), Streptococcus pyogenes (ATCC 29436), Pseudomonas aeruginosa (ATCC 13048), Klebsiella pneumoniae (ATCC 700603), Escherichia coli (ATCC 22922) with MIC ranging between 7.8 ug/mL to 250 μg/mL. The antioxidant activity of selected essential oils was determined by antioxidant assays which were 1,1-Diphenyl-2-picrylhydrazyl assay (DPPH), determination of ferric reducing antioxidant power assay (FRAP) and β-Carotene/linoleic acid bleaching assay. Backhousia citriodora and Laurus nobilis showed the highest antioxidant activity.
    n-Octanal and β-Selinene were identified to be the major components with peak area of 26.37 % and 13.92 % respectively in secondary metabolites analysis by Gas Chromatography-Mass Spectrometry (GCMS).
    Matched MeSH terms: Linoleic Acid
  5. Ashraf I, Zubair M, Rizwan K, Rasool N, Jamil M, Khan SA, et al.
    Chem Cent J, 2018 Dec 17;12(1):135.
    PMID: 30556121 DOI: 10.1186/s13065-018-0495-1
    This research work was executed to determine chemical composition, anti-oxidant and anti-microbial potential of the essential oils extracted from the leaves and stem of Daphne mucronata Royle. From leaves and stem oils fifty-one different constituents were identified through GC/MS examination. The antioxidant potential evaluated through DPPH free radical scavenging activity and %-inhibition of peroxidation in linoleic acid system. The stem's essential oil showed the good antioxidant activity as compared to leaves essential oil. Results of Antimicrobial activity revealed that both stem and leaves oils showed strong activity against Candida albicans with large inhibition zone (22.2 ± 0.01, 18.9 ± 0.20 mm) and lowest MIC values (0.98 ± 0.005, 2.44 ± 0.002 mg/mL) respectively. Leaves essential was also active against Escherichia coli with inhibition zone of 8.88 ± 0.01 mm and MIC values of 11.2 ± 0.40 mg/mL. These results suggested that the plant's essential oils would be a potential cradle for the natural product based antimicrobial as well as antioxidant agents.
    Matched MeSH terms: Linoleic Acid
  6. Rahman MA, Abdullah N, Aminudin N
    Saudi J Biol Sci, 2018 Dec;25(8):1515-1523.
    PMID: 30581314 DOI: 10.1016/j.sjbs.2016.01.021
    Mushrooms have been highly regarded as possessing enormous nutritive and medicinal values. In the present study, we evaluated the anti-oxidative and anti-atherosclerotic potential of shiitake mushroom (Lentinula edodes) using its solvent-solvent partitioned fractions that consisted of methanol:dichloromethane (M:DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA) and aqueous residue (AQ). The hexane fraction (1 mg/mL) mostly scavenged (67.38%, IC50 0.55 mg/mL) the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical, contained the highest reducing capacity (60.16 mg gallic acid equivalents/g fraction), and most potently inhibited lipid peroxidation (67.07%), low density lipo-protein oxidation and the activity of 3-hydroxy 3-methyl glutaryl co-enzyme A reductase (HMGR). GC-MS analyses of the hexane fraction identified α-tocopherol (vitamin E), oleic acid, linoleic acid, ergosterol and butyric acid as the bio-functional components present in L. edodes. Our findings suggest that L. edodes possesses anti-atherosclerotic bio-functionality that can be applied as functional food-based therapeutics against cardiovascular diseases.
    Matched MeSH terms: Linoleic Acid
  7. Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, et al.
    PMID: 30831207 DOI: 10.1016/j.cbpb.2019.01.011
    The capacity of crustaceans to biosynthesise long-chain polyunsaturated fatty acids has yet to be fully defined, due to the lack of evidence on the functional activities of enzymes involved in desaturation or elongation of fatty acid substrates. We report here the cloning and in vitro functional analysis of an elongase from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis placed the elovl close to the vertebrate Elovl1 and Elovl7 clade, which is distinct from the other remaining five Elovl families. The elongase was also clustered together with several elongases from crustaceans and insects. This elongase showed activities towards 16:1n-7, and at lower rate, linoleic acid (18:2n-6) and linolenic acid (18:3n-3). To our knowledge this is the first description of a functional enzyme involved in biosynthesis of long-chained polyunsaturated fatty acids in a crustacean species. Expression of the S. olivacea elovl7-like mRNA was prominent in stomach, intestine and gill tissues, due to the need to regulate the permeability of epithelial tissue through modification of fatty acid compositions. The implication of our findings, in terms of ability of Crustacea phylum to biosynthesise polyunsaturated fatty acids is discussed.
    Matched MeSH terms: Linoleic Acid
  8. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Linoleic Acid
  9. Ibrahim, N.A., Mustafa, S., Ismail, A.
    MyJurnal
    This study evaluated and compared the antioxidant capacity between freshly prepared and lactic fermented Malaysian herbal teas. Herbal teas are rich in antioxidants. Fermentation has been known to be the oldest and cost effective method with the ability to preserve or improve food nutritional qualities. Information on the antioxidant capacity of lactic fermented food or beverage is still lacking. Hence, the objective of this study is to determine the changes in the antioxidant properties of Malaysian herbal teas after being subjected to lactic fermentation. Commercially available local herbal teas were used for this study. Herbal teas such as “Allspice”, “Scaphium”, “Gora” and “Cinnamon” were purchased from the local store in Malaysia and were subjected to 24-hour lactic fermentation. Lactic fermented herbal teas were analyzed for their total phenolic, total flavonoid and antioxidant properties via DPPH, FRAP, and β-carotene linoleate bleaching assay. All lactic fermented herbal teas exhibited higher phenolic contents, flavonoid contents and antioxidant properties compared to the freshly-prepared herbal teas with majority showing significant changes (p < 0.05) in FRAP and β-carotene bleaching assay. Lactic fermented herbal teas also showed an increase in antioxidant capacity in DPPH assay, however non-significant changes were observed.
    Matched MeSH terms: Linoleic Acid
  10. Rohman, A., Sugeng, R., Che Man, Y.B.
    MyJurnal
    The present study was carried out to characterize red fruit (Pandanus conoideus Lam) oil (RFO) in term of FTIR spectra, fatty acid composition, and volatile compounds. FTIR spectrum of RFO was slightly
    different from other common vegetable oils and animal fats, in which in the frequency range of 1750 – 1700 cm-1, RFO appear two bands. The main fatty acid composition of RFO is oleic acid accounting for 68.80% followed by linoleic acid with the concentration of 8.49%. The main volatile compounds of RFO as determined using gas chromatography coupled with mass spectrometry (GC-MS) and headspace analyser are 1,3-dimethylbenzene (27.46%), N-glycyl- L-alanine (17.36%), trichloromethane (15.22%), and ethane (11.43%).
    Matched MeSH terms: Linoleic Acid
  11. Huda-Faujan, N., Noriham, A., Norrakiah, A.S., Babji, A.S.
    MyJurnal
    This study was conducted on selected local herbs such as ulam raja (Cosmos caudatus), kesum (Polygonum minus), selom (Oenanthe javanica), pegaga (Centella asiatica) and curry leaves (Murraya koenigii) to investigate their antioxidative activities. The water extracts of the herbs were analysed for total phenolic content, reducing antioxidant power, ferric thiocyanate (FTC) and the thiobarbituric acid (TBA) test was also accried out. Polygonum minus showed the highest total phenolic content and reducing power among the herbs. Increasing the concentration of the extracts resulted in increased Fe3+ reducing antioxidant power for all the herbs. FTC and TBA tests on the extracts during seven days of storage showed that all the herbs extracts had the ability to reduce oxidation compared to the control (P < 0.05). From the FTC analysis, Murraya koenigii leaves was best in reducing the oxidation rate (67.67%) compared to the other herbs studied. Analysis of TBA showed that Centella asiatica extract had the highest antioxidant effect. However, both TBA and FTC analysis for these two herbs showed no significant difference (P >0.05) from Polygonum minus and butylated hydroxyanisole (BHT) a synthetic antioxidant. Correlation analysis showed positive correlations between amount of total phenolic content and reducing power (r = 0.75) and antioxidative activities (r = 0.58) in linoleic acid emulsion system. This shows that antioxidative activities of these Malaysian herbal plants especially Polygonum minus may be a potential source of natural antioxidants with similar characteristics to the synthetic antioxidant, BHT.
    Matched MeSH terms: Linoleic Acid
  12. Kostadinović Veličkovska S, Catalin Moţ A, Mitrev S, Gulaboski R, Brühl L, Mirhosseini H, et al.
    J Food Sci Technol, 2018 May;55(5):1614-1623.
    PMID: 29666513 DOI: 10.1007/s13197-018-3050-0
    The bioactive compounds and "in vitro" antioxidant activity measured by three antioxidant assays of some traditional and non-traditional cold-pressed edible oils from Macedonia were object of this study. The fatty acid composition showed dominance of monounsaturated oleic acid in "sweet" and "bitter" apricot kernel oils with percentages of 66.7 ± 0.5 and 57.8 ± 0.3%, respectively. The most dominant fatty acid in paprika seed oil was polyunsaturated linoleic acid with abundance of 69.6 ± 2.3%. The most abundant tocopherol was γ-tocopherol with the highest quantity in sesame seed oil (57.6 ± 0.1 mg/100 g oil). Paprika seed oil, sesame seed oil and sweet apricot oil were the richest source of phytosterols. DPPH assay was the most appropriate for the determination of the antioxidant activity of cold-pressed sunflower oil due to high abundance of α-tocopherol with a level of 22.8 ± 1.1 mg/100 g of oil. TEAC assay is the best for the determination of the antioxidant activity of sesame seed oil and paprika seed oils as the richest sources of phenolic compounds. β-carotene assay was the most suitable assay for oils obtained from high pigmented plant material. Triacylglycerols and phytosterol profiles can be used as useful markers for the origin, variety and purity of the oils.
    Matched MeSH terms: Linoleic Acid
  13. Abbas Ali, Hadi Mesran, M., Nik Mahmood, N.A., Abd Latip, R.
    MyJurnal
    In the present work, the influence of microwave power and heating times on the quality
    degradation of corn oil was evaluated. Microwave heating test was carried out using a domestic
    microwave oven for different periods at low- and medium-power settings for the corn oil sample.
    The changes in physicochemical characteristics related to oil degradation of the samples during
    heating were determined by standard methods. In this study, refractive index, free fatty acid
    content, peroxide value, p-anisidine value, TOTOX value, viscosity and total polar compound
    of the oils all increased with increasing heating power and time of exposure. In GLC analysis,
    the percentage of linoleic acid tended to decrease, whereas the percentage of palmitic, stearic
    and oleic acids increased. The C18:2/C16:0 ratio decreased in all oil samples with increasing
    heating times. Exposing the corn oil to various microwave power settings and heating periods
    caused the formation of hydroperoxides and secondary oxidation products. The heating reduced
    the various tocopherol isomers in corn oil and highest reduction was detected in γ-tocopherol.
    Longer microwave heating times resulted in a greater degree of oil deterioration. Microwave
    heating caused the formation of comparatively lower amounts of some degradative products in
    the oil samples heated at low-power setting compared to medium-power setting. The present
    analysis indicated that oil quality was affected by both microwave power and heating time.
    Matched MeSH terms: Linoleic Acid
  14. Mosadeghzad Z, Zuriati Zakaria, Asmat A, Gires U, Wickneswari R, Pittayakhajonwut P, et al.
    Sains Malaysiana, 2012;41:333-337.
    Marine fungus Fusarium proliferatum derived from marine sponge collected along Pulau Tinggi, Malaysia was cultivated on Potato Dextrose Broth and incubated for 7 days at 30oC. The liquid cultures were then extracted using ethyl acetate. The crude extract was investigated for its anti-microbial activity and was passed through Sephadex column and the fractions were collected. Reverse phase HPLC was used to monitor the component of crude extract. HPLC guided purification of crude extract resulted in the isolation of linoleic acid, 4-hydroxy phenethyl alcohol, 2,5-furandimethanol and adenosine. Their structures were elucidated by spectroscopic methods.
    Matched MeSH terms: Linoleic Acid
  15. Abbas Ali M, Bamalli Nouruddeen Z, Ida I. Muhamad, Abd Latip R, Hidayu Othman N
    Sains Malaysiana, 2014;43:1189-1195.
    The aim of this study was to evaluate on how heat treatments by microwave oven may affect the oxidative degradation of sunflower oil (SFO) and its blend with palm olein (Po). The blend was prepared in the volume ratio of 40:60 (Po: SFO, PSF). The samples were exposed to microwave heating at medium power setting, for different periods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, total oxidation (Tomx), specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C 18:21C16:0 ratio decreased as microwave heating progressed. Microwave heating temperature increased with increasing heating time and longer heating times resulted in a greater degree of oil deterioration. The percentage of linoleic acid tended to decrease, whereas the percentage of palmitic acid increased. The effect of adding PO to SFO on the formation of free fatty acids and conjugated dienes during microwave treatment was not significant (p< 0.05). No significant differences in food oil sensor value was observed between SFO and PSF. Based on the most oxidative stability criteria, it can be concluded that the microwave heating caused the formation of comparatively lower amounts of oxidation products in PSF compared to SFO, indicating a lower extent of oxidative degradation of PSF.
    Matched MeSH terms: Linoleic Acid
  16. M. Abbas Ali, Rafiqqah binti Mohamad Sabri, Khu Say Li, Nik Azmi Nik Mahmood
    Sains Malaysiana, 2015;44:1159-1166.
    The efficacy of pandan leaf extract (PLE) addition on the oxidative degradation of sunflower oil (SFO) during microwave heating was studied. 80% of methanol extract showed better antioxidant action than the 100% methanol or ethanol extract and the total phenolic contents, DPPH radical scavenging activity and linoleic acid system of PLE were found to be 1845.50 mg GAE/100 g, 60.62-89.87% and 82.21%, respectively. 80% of methanolic extracts at different concentrations (0.1, 0.2 and 0.4 wt. %) were added to SFO. The antioxidant treated and control oil samples were subjected to microwave heating and were analyzed at regular intervals for the extent of oxidative changes following the measurements of peroxide value, p-anisidine value, TOTOX, free fatty acid, specific extinction, iodine value, viscosity, polar compounds and fatty acid composition. The PLE were found to be quite effective towards suppressing the primary and secondary oxidation products in the tested oil. The order of effectiveness (p<0.05) was BHA > 0.4% PLE > 0.2% PLE > 0.1% PLE > control. The present results suggested that antioxidant extract from pandan leaf might be used to protect vegetable oils from oxidation.
    Matched MeSH terms: Linoleic Acid
  17. Noor Wini Mazlan, Ikram M. Said
    Sains Malaysiana, 2011;40(9):1037-1041.
    The seeds of C. cleomifolia (locally known as kacang hantu) collected along Simpang Pulai - Berinchang Road, Cameron Highlands, was defatted with hexane and the resulting oil was analysed for their physico-chemical properties. The percentage yield of the oil was calculated as 5.3%. The acid value (1.2%), iodine value (85), peroxide value (0.6), saponification value (192.0) and unsaponifiable matter (2.3%) were determined to assess the quality of the oil. The physico-chemical characterisation showed that C. cleomifolia seeds oil is unsaturated semi-drying oil, with high saponifi cation and acidic values. The fatty acid composition of C. cleomifolia seed oil was determined by Gas Chromatography and Gas Chromatography-Mass Spectrometry (ToF). The seed oil of C. cleomifolia contained linoleic acid (57.59%) and palmitic acid (5.07%), the most abundant unsaturated and saturated fatty acids, respectively. The polyunsaturated triacylglycerol (TAG) in C. cleomifolia seed oil determined by reverse phase High performance Liquid Chromatography; contained as PLL (18.04%) followed by POL + SLL (11.92%), OOL (7.04%) and PLLn (6.31%). The melting and cooling point of the oil were 16.22°C and -33.54°C, respectively
    Matched MeSH terms: Linoleic Acid
  18. Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali. G.
    MyJurnal
    In this study, the effect of different solvent including ethanol, n-hexane and ethyl acetate on antioxidant
    activity and total phenolic content (TPC) of winter melon (Benincasa hispida) seeds extract was investigated using conventional Soxhlet extraction (CSE). DPPH and ABTS scavenging activity and TPC results indicated that the seed extracts obtained using ethanol possessed the highest antioxidant activity and followed by ethyl acetate and n-hexane. By considering obtained results, it was clear that there was a high positive correlation between TPC and antioxidant activity. Linoleic acid forms a significant percentage of unsaturated fatty acids of the seed extract (60.6%). It is well known that essential fatty acids including linoleic acid and linolenic acid which are detected in extracts play important roles in preventing many disease and abnormal differentiation problems. B. hispida seeds are potential source of natural antioxidant compounds to replace synthetic antioxidants.
    Matched MeSH terms: Linoleic Acid
  19. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
    Matched MeSH terms: Linoleic Acid/metabolism
  20. Tang SG, Sieo CC, Kalavathy R, Saad WZ, Yong ST, Wong HK, et al.
    J Food Sci, 2015 Aug;80(8):C1686-95.
    PMID: 26174350 DOI: 10.1111/1750-3841.12947
    A 16-wk feeding experiment was conducted to investigate the effects of a prebiotic, isomaltooligosaccharide (IMO), a probiotic, PrimaLac®, and their combination as a synbiotic on the chemical compositions of egg yolks and the egg quality of laying hens. One hundred and sixty 16-wk-old Hisex Brown pullets were randomly assigned to 4 dietary treatments: (i) basal diet (control), (ii) basal diet + 1% IMO (PRE), (iii) basal diet + 0.1% PrimaLac® (PRO), and (iv) basal diet + 1% IMO + 0.1% PrimaLac® (SYN). PRE, PRO, or SYN supplementation not only significantly (P < 0.05) decreased the egg yolk cholesterol (24- and 28-wk-old) and total saturated fatty acids (SFA; 28-, 32-, and 36-wk-old), but also significantly (P < 0.05) increased total unsaturated fatty acids (UFA; 28-, 32-, and 36-wk-old), total omega 6 and polyunsaturated fatty acids (PUFA), including linoleic and alpha-linolenic acid levels in the eggs (28-wk-old). However, the total lipids, carotenoids, and tocopherols in the egg yolks were similar among all dietary treatments in the 24-, 28-, 32-, and 36-wk-old hens. Egg quality (Haugh unit, relative weights of the albumen and yolk, specific gravity, shell thickness, and yolk color) was not affected by PRE, PRO, or SYN supplementation. The results indicate that supplementations with IMO and PrimaLac® alone or in combination as a synbiotic might be useful for improving the cholesterol content and modifying the fatty acid compositions of egg yolk without affecting the quality of eggs from laying hens between 24 and 36 wk of age.
    Matched MeSH terms: Linoleic Acid/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links