METHODS: In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined.
RESULTS: Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only.
CONCLUSION: The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control.
METHODS: BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison.
RESULTS: BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P
HYPOTHESIS/ PURPOSE: To compare the anti-inflammatory activities and the anti-nociceptive properties of RG and BG.
METHODS: Nitric Oxide (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR), western blot, xylene-induced ear edema, carrageenan-induced paw edema RESULTS: The ginsenoside contents were confirmed using high-performance liquid chromatography (HPLC) and has been altered through increased processing. The highest concentration of these extracts inhibited NO production to near-basal levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 without exhibiting cytotoxicity. Pro-inflammatory cytokine expression at the mRNA level was investigated using qRT-PCR. Comparatively, BG exhibited better inhibition of pro-inflammatory mediators, iNOS and COX-2 and pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α. Protein expression was determined using western blot analysis and BG exhibited stronger inhibition. Xylene-induced ear edema model in mice and carrageenan-induced paw edema in rats were carried out and tested with the effects of ginseng as well as dexamethasone and indomethacin - commonly used drugs. BG is a more potent anti-inflammatory agent, possesses anti-nociceptive properties, and has a strong potency comparable to the NSAIDs.
CONCLUSION: BG has more potent anti-inflammatory and anti-nociceptive effects due to the change in ginsenoside component with increased processing.