Displaying publications 21 - 40 of 117 in total

Abstract:
Sort:
  1. Nikolaidou T, Cai XJ, Stephenson RS, Yanni J, Lowe T, Atkinson AJ, et al.
    PLoS One, 2015;10(10):e0141452.
    PMID: 26509807 DOI: 10.1371/journal.pone.0141452
    Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.
    Matched MeSH terms: Myocardium/metabolism*; Myocardium/pathology*
  2. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, et al.
    PLoS One, 2016;11(3):e0150137.
    PMID: 26963622 DOI: 10.1371/journal.pone.0150137
    Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.
    Matched MeSH terms: Myocardium/metabolism*; Myocardium/pathology
  3. Cao Y, Lu Z, Wang D, Tan KS, Liu W, Wu Q, et al.
    Eur J Pharmacol, 2021 Nov 15;911:174539.
    PMID: 34599913 DOI: 10.1016/j.ejphar.2021.174539
    Ischemia heart disease, one of the lethal cardiovascular diseases, irreversibly impairs cardiac function and is recognized as the primary risk factor for mortality in industrialized countries. The myocardial ischemia treatment still faces a considerable degree of increasing unmet needs. Isosteviol sodium (STVNa) and its derivatives have been proven to effectively alleviate metabolic diseases, hypertension, and heart hypertrophy. Little is known about how STVNa confers the cardioprotective effect during acute myocardial ischemia (AMI). In the present study, a rat model of acute ST-segment-elevation myocardial ischemia by left anterior descending (LAD) ligation was established. Compared to the AMI model group, STVNa administration (4 mg/kg, twice a day) well preserved left ventricle function by ejection fraction (45.10 ± 10.39 vs. 73.64 ± 13.15, p = 0.0013) and fractional shortening (22.94 ± 6.28 vs. 44.00 ± 11.05, p = 0.0017). Further analysis shows that high-dose STVNa (4 mg/kg) significantly improved the hemodynamics in AMI rats, with LVSP (88.25 ± 12.78 vs 99.75 ± 5.10, p = 0.018), max dP/dt (2978.45 ± 832.46 vs 4048.56 ± 827.23, p = 0.096), LVEDP (19.88 ± 2.00 vs 22.26 ± 3.21, p = 0.04) and left ventricular relaxation time constant (Tau) (0.030 ± 0.006 vs 0.021 ± 0.004, p = 0.021). Mechanically, STVNa administration retained the myocardial levels of phosphorylated AMPK, and CPT1b. Moreover, STVNa significantly increased the total energy expenditure, and reduced fatty acid accumulation through mitochondrial oxidative phosphorylation, which was supported by the indirect calorimetry and cellular energy analysis. Taken together, these findings suggest that STVNa is a potential cardioprotection agent for ischemic cardiomyopathy, likely through improving energy homeostasis, left ventricular hemodynamics, and heart function.
    Matched MeSH terms: Myocardium/metabolism; Myocardium/pathology
  4. Ngim CF, Lee MY, Othman N, Lim SM, Ng CS, Ramadas A
    Hemoglobin, 2019 Mar;43(2):95-100.
    PMID: 31179787 DOI: 10.1080/03630269.2019.1599906
    We explored the severity and risk factors for cardiac and liver iron overload (IOL) in 69 thalassemia patients who underwent T2* magnetic resonance imaging (T2* MRI) in a Malaysian tertiary hospital from 2011 to 2015. Fifty-three patients (76.8%) had transfusion-dependent thalassemia (TDT) and 16 (23.2%) had non transfusion-dependent thalassemia (NTDT). Median serum ferritin prior to T2* MRI was 3848.0 μg/L (TDT) and 3971.0 μg/L (NTDT). Cardiac IOL was present in 16 (30.2%) TDT patients and two (12.5%) NTDT patients, in whom severe cardiac IOL defined as T2* <10 ms affected six (11.3%) TDT patients. Liver IOL was present in 51 (96.2%) TDT and 16 (100%) NTDT patients, 37 (69.8%) TDT and 13 (81.3%) NTDT patients were in the most severe category (>15 mgFe/gm dry weight). Serum ferritin showed a significantly strong negative correlation with liver T2* in both TDT (rs = -0.507, p = 0.001) and NTDT (r = -0.762, p = 0.002) but no correlation to cardiac T2* in TDT (r = -0.252, p = 0.099) as well as NTDT (r = -0.457, p = 0.100). For the TDT group, regression analysis showed that cardiac IOL was more severe in males (p = 0.022) and liver IOL was more severe in the Malay ethnic group (p = 0.028) and those with higher serum ferritin levels (p = 0.030). The high prevalence of IOL in our study and the poor correlation between serum ferritin and cardiac T2* underline the need to routinely screen thalassemia patients using T2* MRI to enable the early detection of cardiac IOL.
    Matched MeSH terms: Myocardium/metabolism; Myocardium/pathology
  5. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
    Matched MeSH terms: Myocardium
  6. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:241-51.
    PMID: 26897481 DOI: 10.1016/j.compbiomed.2016.01.029
    Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.
    Matched MeSH terms: Myocardium
  7. Jaćević V, Wu Q, Nepovimova E, Kuča K
    Environ Toxicol Pharmacol, 2019 Oct;71:103221.
    PMID: 31365892 DOI: 10.1016/j.etap.2019.103221
    Our aim was to compare the protective efficacy of two different formulations of methylprednisolone in T-2 toxin-induced cardiomyopathy. Methylprednisolone (soluble form, Lemod-solu® and/or depot form, Lemod-depo®, a total single dose of 40 mg/kg im) was given immediately after T-2 toxin (1 LD50 0.23 mg/kg sc). The myocardial tissue samples were examinated by using histopathology, semiquantitative and imaging analyses on day 1, 7, 14, 21, 28 and 60 of the study. Therapeutic application of Lemod-solu® significantly decreased the intensity of myocardial degeneration and haemorrhages, distribution of glycogen granules in the endo- and perimysium, a total number of mast cells and the degree of their degranulation was in correlation with the reversible heart structural lesions (p 
    Matched MeSH terms: Myocardium
  8. Opitz HM, Jakob HJ, Wiensenhuetter E, Devi VV
    Avian Pathol, 1982;11(3):527-34.
    PMID: 18770216
    A myopathy associated with elongated intramuscular protozoan schizonts of uncertain classification was observed in chickens in commercial farms. Of 152 affected fowls originating from 21 flocks in 12 farms, 149 were 24 weeks of age or older and 136 were broiler breeder birds. Both sexes were affected. The disease was only observed during the months of October, November and December, 1976 and 1977. The monthly mortality rate in affected adult flocks rose by 0.5% to 4% and the egg production declined by 5% to 15% during this period. Most affected birds were in good body condition or overweight. Gross lesions were usually present in all skeletal muscles and the cardiac muscle. They resembled nutritional myopathy, sarcosporidiosis, leucocytozoonosis or haemorrhagic syndrome. Microscopically visible elongated schizonts were demonstrated in skeletal muscles and the cardiac muscle in 49 of 55 birds examined histologically. The possible aetiology with respect to known parasites of muscles in fowls is discussed.
    Matched MeSH terms: Myocardium
  9. Wan Ab Naim WN, Mohamed Mokhtarudin MJ, Chan BT, Lim E, Ahmad Bakir A, Nik Mohamed NA
    J Theor Biol, 2021 01 21;509:110527.
    PMID: 33096094 DOI: 10.1016/j.jtbi.2020.110527
    Reperfusion of the blood flow to ischemic myocardium is the standard treatment for patients suffering myocardial infarction. However, the reperfusion itself can also induce myocardial injury, in which the actual mechanism and its risk factors remain unclear. This work aims to study the mechanism of ischemia-reperfusion treatment using a three-dimensional (3D) oxygen diffusion model. An electrical model is then coupled to an oxygen model to identify the possible region of myocardial damage. Our findings show that the value of oxygen exceeds its optimum (>1.0) at the ischemic area during early reperfusion period. This complication was exacerbated in a longer ischemic period. While a longer reperfusion time causes a continuous excessive oxygen supply to the ischemic area throughout the reperfusion time. This work also suggests the use of less than 0.8 of initial oxygen concentration in the reperfusion treatment to prevent undesired upsurge at the early reperfusion period and further myocardial injury. We also found the region at risk for myocardial injury is confined in the ischemic vicinity revealed by its electrical conductivity impairment. Although there is a risk that reperfusion leads to myocardial injury for excessive oxygen accumulation, the reperfusion treatment is helpful in reducing the infarct size.
    Matched MeSH terms: Myocardium
  10. Lee CY, Huang CH, Rastegari E, Rengganaten V, Liu PC, Tsai PH, et al.
    Int J Mol Sci, 2021 Sep 13;22(18).
    PMID: 34576032 DOI: 10.3390/ijms22189869
    The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.
    Matched MeSH terms: Myocardium/cytology; Myocardium/immunology; Myocardium/pathology
  11. Ngow, H.A., Wan Khairina, W.M.N.
    MyJurnal
    A 43-year-old man presented with acute extensive anterior ST-segment elevation myocardial infarction. During coronary angiogram, a segment of myocardial bridging was noted in the mid-segment of left anterior descending artery. The association of myocardial bridging and an anterior ST segment elevation is rarely reported in the medical literature. Myocardial bridging is caused by systolic compression of a coronary artery by overlying myocardium tissue. It is a rare coronary artery anomaly, which usually has a benign prognosis despite some case reports of myocardial ischemia leading to myocardial infarction, lethal arrhythmias and sudden cardiac death. We report one such case of myocardial bridging that was complicated with acute extensive anterior myocardial infarction.
    Matched MeSH terms: Myocardium
  12. Chan BT, Ahmad Bakir A, Al Abed A, Dokos S, Leong CN, Ooi EH, et al.
    Int J Numer Method Biomed Eng, 2019 06;35(6):e3204.
    PMID: 30912313 DOI: 10.1002/cnm.3204
    Flow energetics have been proposed as early indicators of progressive left ventricular (LV) functional impairment in patients with myocardial infarction (MI), but its correlation with individual MI parameters has not been fully explored. Using electro-fluid-structure interaction LV models, this study investigated the correlation between four MI parameters: infarct size, infarct multiplicity, regional enhancement of contractility at the viable myocardium area (RECVM), and LV mechanical dyssynchrony (LVMD) with intraventricular vortex and flow energetics. In LV with small infarcts, our results showed that infarct appearance amplified the energy dissipation index (DI), where substantial viscous energy loss was observed in areas with high flow velocity and near the infarct-vortex interface. The LV with small multiple infarcts and RECVM showed remarkable DI increment during systole and diastole. In correlation analysis, the systolic kinetic energy fluctuation index (E') was positively related to ejection fraction (EF) (R2  = 0.982) but negatively correlated with diastolic E' (R2  = 0.970). Diastolic E' was inversely correlated with vortex kinetic energy (R2  = 0.960) and vortex depth (R2  = 0.876). We showed an excessive systolic DI could differentiate infarcted LV with normal EF from healthy LV. Strong flow acceleration, LVMD, and vortex-infarct interactions were predominant factors that induced excessive DI in infarcted LVs. Instead of causing undesired flow turbulence, high systolic E' suggested the existence of energetic flow acceleration, while high diastolic E' implied an inefficient diastolic filling. Thus, systolic E' is not a suitable early indicator for progressive LV dysfunction in MI patients, while diastolic E' may be a useful index to indicate diastolic impairment in these patients.
    Matched MeSH terms: Myocardium
  13. Khor KH, Moore TA, Shiels IA, Greer RM, Arumugam TV, Mills PC
    PLoS One, 2016;11(1):e0146022.
    PMID: 26727203 DOI: 10.1371/journal.pone.0146022
    PURPOSE: Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.

    METHODS: An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT) mice reduced heart rate (HR) and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/-) mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV) in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR) in a randomized crossover study design.

    RESULTS: HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P< 0.001 for all outcomes). Administration of atenolol (2.5 mg/kg) reduced the HR and increased HRV (P< 0.05, respectively) in the wild type but not in the CD88-/- mice. There was no shift of the sympathovagal balance post-atenolol in either strains of mice (P> 0.05), except for the reduced LF/HF (Lower frequency/High frequency) ratio (P< 0.05) at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001) but the HRV of CD88-/- mice were significantly increased (P< 0.05), compared with WT mice.

    CONCLUSION: Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.

    Matched MeSH terms: Myocardium/metabolism*
  14. Luo H, Li Q, Pramanik J, Luo J, Guo Z
    Histol Histopathol, 2014 Oct;29(10):1287-93.
    PMID: 24515304
    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.
    Matched MeSH terms: Myocardium/metabolism*
  15. Singh MK, O'Donnell C, Woodford NW
    Forensic Sci Med Pathol, 2009;5(3):236-42.
    PMID: 19669956 DOI: 10.1007/s12024-009-9103-y
    We report the case of an 82-year-old woman with a past history of diabetes mellitus who died following blunt head injury sustained in a fall resulting in an acute subdural hematoma. Serial postmortem CT scans of the chest and abdomen performed over a 3-day period demonstrated progressive intra-hepatic and intra-cardiac gas formation whilst the deceased was stored in a standard mortuary refrigerator at a nominated temperature of 4 degrees C. Measured mortuary refrigerator temperatures over a 7 day period showed statistically significant day to day variability in temperatures above 4 degrees C as well as variations in temperature depending on location within the refrigerator space. In the absence of other known factors associated with such gas formation, putrefaction seems the likely cause despite a lack of obvious external features. This phenomenon must therefore be taken into account when interpreting the presence of visceral gas on postmortem CT and relating such gas to the cause of death.
    Matched MeSH terms: Myocardium/chemistry
  16. Islam MN, Khan J, Jaafar H
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S143-6.
    PMID: 19345604 DOI: 10.1016/j.legalmed.2009.02.045
    Series of experiments have been completed with Methamphetamine (MA). Some were with the higher, medium or lower duration of MA administration and some were with acute or chronic doses. Whatever may be the dose or duration the ultimate result came out with the further establishment of cardio-toxic effect of this drug. Cardiovascular symptoms related to MA toxicity include chest pain, palpitations, dyspnoea, hypertension, tachycardia, atrial and ventricular arrhythmias, and myocardial ischemia. MA abusers often go through a repeated pattern of frequent drug administrations followed by a period of abstinence. Previous studies have focused largely upon the chronic effect of MA intake to major organs, such as the brains and the heart, by using animal experiments. However, there is a lack of research into the effects of acute dose of MA, especially pertaining to the heart. To clarify the effect of MA on myocardium, 22 male Wister rats aged six weeks were divided into MA, Placebo (P) and Control (C) group were examined following single intraperitoneal administration of MA at a dose of 50 mg/kg body weight. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including cellular infiltration, with clusters of macrophage-like cells having large nuclei and little cytoplasm evident in the sub-endocardium region. There were presence of few macrophages, leucocytes, and spindle-like fibroblasts. Bringing in to account of cardiac changes by a single dose of MA, slogan should be voiced out to leave methamphetamine.
    Matched MeSH terms: Myocardium/pathology*
  17. Murty OP
    J Forensic Leg Med, 2009 Apr;16(3):162-7.
    PMID: 19239970 DOI: 10.1016/j.jflm.2008.07.009
    A case is presented of a fatal environmental accidental injuries of lightning. A pedestrian was struck by lightning. The macroscopic and microscopic lightning injuries are reviewed.
    Matched MeSH terms: Myocardium/pathology
  18. Murty OP, Mun KS, Hussin H
    J Forensic Leg Med, 2008 Jan;15(1):37-41.
    PMID: 18309549
    This is a case report of 16-year-old adolescent school boy who died due to unusual calcification of coronary arteries. He died while cycling with his friends. While cycling fast he fell. He was brought dead to hospital. At times unsuspected cardiac lesions cause sudden death during extraneous physical activities in healthy persons. Sudden death in adolescents is not very common. It is an unusual case as apparently healthy adolescent boy actively participating in sports had stony hard coronary arteries. The coronaries showed advanced calcification and early bone formation. The myocardial septum had extensive fibrosis. The pathogenesis and other possible similar conditions are also discussed in the report.
    Matched MeSH terms: Myocardium/pathology
  19. Fong SW, Few LL, See Too WC, Khoo BY, Nik Ibrahim NN, Yahaya SA, et al.
    BMC Res Notes, 2015;8:679.
    PMID: 26576922 DOI: 10.1186/s13104-015-1677-8
    Biomarkers play a pivotal role in the diagnosis and management of patients with acute coronary syndrome. This study aimed to investigate the differences in level of several biomarkers, i.e. C-reactive protein, myeloperoxidase, soluble CD40 ligand and placental growth factor, between acute coronary syndrome and chronic stable angina patients. The relationship between these biomarkers in the coronary circulation and systemic circulation was also investigated.
    Matched MeSH terms: Myocardium/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links