Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Nna VU, Bakar ABA, Ahmad A, Umar UZ, Suleiman JB, Zakaria Z, et al.
    Andrology, 2020 05;8(3):731-746.
    PMID: 31816190 DOI: 10.1111/andr.12739
    BACKGROUND: Diabetes mellitus is one of the risk factors for male subfertility/infertility. Malaysian propolis is reported to decrease hyperglycaemia in diabetic state.

    OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.

    MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.

    RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.

    CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.

    Matched MeSH terms: Propolis/pharmacology*
  2. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Propolis/therapeutic use*
  3. Usman UZ, Bakar ABA, Mohamed M
    BMC Complement Altern Med, 2018 Dec 05;18(1):324.
    PMID: 30518366 DOI: 10.1186/s12906-018-2391-6
    BACKGROUND: This study assessed the effects of propolis alone or combined with insulin on maternal status, pregnancy outcomes and placental oxidative stress in streptozotocin-induced diabetic rats.

    METHODS: Forty female rats were randomly assigned into five groups (n = 8/group) i.e. non-DM (non-diabetes), DM (diabetes), DM + Propolis (diabetes on propolis orally); DM + Insulin (diabetes on insulin subcutaneously) and DM + Combined (diabetes on propolis and insulin) groups. Propolis and insulin were given at 300 mg/kg/day orally and 5.0 IU/kg/day subcutaneously, respectively, for 4 weeks.

    RESULTS: Fasting blood glucose, conception period, implantation losses, foetal blood glucose and placental oxidative stress markers such as malonaldehyde and protein carbonyl were significantly higher while maternal weight gain, foetal body weight and total antioxidant capacity were significantly lower in DM group compared with non-DM group. These changes were significantly improved in rats treated with propolis or insulin alone with greater significant effects in rats treated with both propolis and insulin.

    CONCLUSION: This study may suggest the protective effects of propolis against DM-induced impaired pregnancy outcomes and placental oxidative stress with greater effects when combined with insulin.

    Matched MeSH terms: Propolis/pharmacology*
  4. Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, et al.
    Arch Physiol Biochem, 2020 Apr 22.
    PMID: 32319823 DOI: 10.1080/13813455.2020.1752258
    Context: Global prevalence of obesity is increasing. Objective: To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. Methods: Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). Results: HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. Conclusion: BB modulated most of these parameters, as corroborated by histology.
    Matched MeSH terms: Propolis
  5. Suleiman JB, Abu Bakar AB, Noor MM, Nna VU, Othman ZA, Zakaria Z, et al.
    Am J Physiol Endocrinol Metab, 2021 Sep 01;321(3):E351-E366.
    PMID: 34229480 DOI: 10.1152/ajpendo.00093.2021
    The pituitary-gonadal axis plays an important role in steroidogenesis and spermatogenesis, and by extension, fertility. The aim of this study was to investigate the protective role of bee bread, a natural bee product, against obesity-induced decreases in steroidogenesis and spermatogenesis. Thirty-two adult male Sprague-Dawley rats weighing between 200 and 300 g were divided into four groups (n = 8/group), namely: normal control (NC), high-fat diet (HFD), HFD plus bee bread administered concurrently for 12 wk (HFD + B), HFD plus orlistat administered concurrently for 12 wk (HFD + O) groups. Bee bread (0.5 g/kg) or orlistat (10 mg/kg/day) was suspended in distilled water and given by oral gavage daily for 12 wk. Levels of follicle-stimulating hormone, luteinizing hormone, testosterone, and adiponectin, as well as sperm count, motility, viability, normal morphology, and epididymal antioxidants decreased, whereas levels of leptin, malondialdehyde, and sperm nDNA fragmentation increased significantly in the HFD group relative to the NC group. There were significant decreases in the testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme, 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD in the testes of the HFD group. Furthermore, mount, intromission and ejaculatory latencies increased, and penile cGMP level decreased significantly in the HFD group. Supplementation with bee bread significantly reduced leptin level and increased adiponectin level, enhanced sperm parameters and reduced sperm nDNA fragmentation, upregulated the levels of steroidogenic genes and proteins in HFD-induced obese male rats. Bee bread improved steroidogenesis and spermatogenesis by upregulating steroidogenic genes. Therefore, bee bread may be considered as a potential supplementation to protect against infertility in overweight men or men with obesity.NEW & NOTEWORTHY The high-fat diet utilized in the present study induced obesity in the male rats. Bee bread supplementation mitigated impaired steroidogenesis, spermatogenesis, mating behavior, and fertility potential by counteracting the downregulation of steroidogenic genes, thus increasing testosterone levels and suppressing epididymal oxidative stress. These benefits may be due to the abundance of phenolic and flavonoid compounds in bee bread.
    Matched MeSH terms: Propolis/administration & dosage*
  6. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Propolis/administration & dosage*; Propolis/chemistry
  7. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p 

    Matched MeSH terms: Propolis
  8. Quoc LPT
    Med J Malaysia, 2023 Sep;78(5):687.
    PMID: 37775498
    No abstract available.
    Matched MeSH terms: Propolis*
  9. Mustafa MZ, Zulkifli FN, Fernandez I, Mariatulqabtiah AR, Sangu M, Nor Azfa J, et al.
    PMID: 31885664 DOI: 10.1155/2019/8258307
    This study was conducted to evaluate the effects of stingless bee honey (SBH) supplementation on memory and learning in mice. Despite many studies that show the benefits of honey on memory, reports on the nootropic effects of SBH are still lacking, and their underlying mechanism is still unclear. SBH is a honey produced by the bees in the tribe of Meliponini that exist in tropical countries. It features unique storage of honey collected in cerumen pots made of propolis. This SBH may offer a better prospect for therapeutic performance as the previous report identifies the presence of antioxidants that were greater than other honey produced by Apis sp. In this study, SBH was tested on Swiss albino mice following acute (7 days) and semichronic (35 days) supplementation. Experiments were then conducted using Morris water maze (MWM) behaviour analysis, RT-PCR for gene expression of mice striatum, and NMR for metabolomics analysis of the honey. Results indicate spatial working memory and spatial reference memory of mice were significantly improved in the honey-treated group compared with the control group. Improved memory consolidations were also observed in prolonged supplementation. Gene expression analyses of acutely treated mice demonstrated significant upregulation of BDNF and Itpr1 genes that involve in synaptic function. NMR analysis also identified phenylalanine, an essential precursor for tyrosine that plays a role at the BDNF receptor. In conclusion, SBH supplementation for seven days at 2000 mg/kg, which is equivalent to a human dose of 162 mg/kg, showed strong capabilities to improve spatial working memory. And prolonged intake up to 35 days increased spatial reference memory in the mice model. The phenylalanine in SBH may have triggered the upregulation of BDNF genes in honey-treated mice and improved their spatial memory performance.
    Matched MeSH terms: Propolis
  10. Siti Radziah Ismail
    MyJurnal
    Introduction: Trigona thoracica propolis is known to have antimicrobial properties, however its
    antileptospiral properties and its synergistic effects with commonly prescribed antibiotics are scarcely
    documented. This study aimed to evaluate the antileptospiral properties of Trigona thoracica against
    pathogenic Leptospira species (spp.) and to study its synergistic effects with commonly prescribed
    antibiotics. Materials and Methods: The tested Leptospira serovars were Australis, Bataviae, Canicola and
    Javanica. Aqueous extract propolis (AEP) and ethanolic extracts propolis (EEP) were used. Broth dilution
    methods were used to determine the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
    Concentration (MBC) and the synergistic effects between the propolis and the tested antibiotics. The
    synergistic effects was evaluated by using the fractional inhibitory concentration (FIC) index. Morphological
    changes of the treated Leptospira were observed under a Scanning Electron Microscope (SEM). Results: The
    AEP and EEP were found to have antileptospiral properties against the tested Leptospira spp. The synergy
    result showed that only combination of AEP and penicillin G against serovar Australis has demonstrated
    synergistic effect with the FIC index of 0.38. Morphological study using SEM showed significant structural
    changes of the treated Leptospira spp. Conclusions: The result suggests that Trigona thoracica propolis could
    potentially be used as either a complimentary or an alternative therapeutic agent against pathogenic
    Leptospira spp.
    Matched MeSH terms: Propolis
  11. Boukraâ L, Sulaiman SA
    Recent Pat Antiinfect Drug Discov, 2009 Nov;4(3):206-13.
    PMID: 19673699
    Honey and other bee products were subjected to laboratory and clinical investigations during the past few decades and the most remarkable discovery was their antibacterial activity. Honey has been used since ancient times for the treatment of some diseases and for the healing of wounds but its use as an anti-infective agent was superseded by modern dressings and antibiotic therapy. However, the emergence of antibiotic resistant strains of bacteria has confounded the current use of antibiotic therapy leading to the re-examination of former remedies. Honey, propolis, royal jelly and bee venom have a strong antibacterial activity. Even antibiotic-resistant strains such as epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycine resistant Enterococcus (VRE) have been found to be as sensitive to honey as the antibiotic-sensitive strains of the same species. Sensitivity of bacteria to bee products varies considerably within the product and the varieties of the same product. Botanical origin plays a major role in its antibacterial activity. Propolis has been found to have the strongest action against bacteria. This is probably due to its richness in flavonoids. The most challenging problems of using hive products for medical purposes are dosage and safety. Honey and royal jelly produced as a food often are not well filtered, and may contain various particles. Processed for use in wound care, they are passed through fine filters which remove most of the pollen and other impurities to prevent allergies. Also, although honey does not allow vegetative bacteria to survive, it does contain viable spores, including clostridia. With the increased availability of licensed medical stuffs containing bee products, clinical use is expected to increase and further evidence will become available. Their use in professional care centres should be limited to those which are safe and with certified antibacterial activities. The present article is a short review of recent patents on antibiotics of hives.
    Matched MeSH terms: Propolis/pharmacology; Propolis/chemistry
  12. Zhao L, Yu M, Sun M, Xue X, Wang T, Cao W, et al.
    Molecules, 2017 Nov 10;22(11).
    PMID: 29125569 DOI: 10.3390/molecules22111935
    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees-Heterotrigona itama-by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24(E)-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.
    Matched MeSH terms: Propolis/analysis*
  13. Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N
    Molecules, 2021 Feb 11;26(4).
    PMID: 33670262 DOI: 10.3390/molecules26040957
    Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.
    Matched MeSH terms: Propolis/therapeutic use; Propolis/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links