Displaying publications 21 - 40 of 42 in total

Abstract:
Sort:
  1. Khor Wei Chung, Chow Weng Sum, Abd. Hadi A. Rahman
    Sains Malaysiana, 2015;44:931-940.
    The Sandakan Formation of the Segama Group is exposed across the Sandakan Peninsular in eastern Sabah. This Upper Miocene part of the Segama Group unconformably overlies the Garinono Formation and is conformably overlain by the Bongaya Formation. This formation was investigated with detailed logging of outcrops and microfossils analysis in order to map the depositional facies and sedimentary environment. This study showed the presence of seven lithofacies: Thick amalgamated sandstone; thin, lenticular interbedded HCS sandstones and mudstone; laminated mudstone with Rhizophora; trough cross-bedded sandstone; laminated mudstone; strip mudstone with thin sandstone and siltstone; and interbedded HCS sandstone and mudstone. Based on the presence of Rhizophora, Brownlowia, Florchuetia sp., Polypodium, Stenochleana palustris, Ascidian spicule low angle cross bedding, very fine grained sandstone, thin alternations of very fine sandstone, silt and clay layers showing cyclicity (muddy rhythemites), rocks in the Sandakan Formation are interpreted as mangal estuary and open marine facies. Three facies associations could be deduced from the seven lithofacies: Gradual coarsening upwards shoreface; abrupt change facies and prograding estuary facies association.
    Matched MeSH terms: Rhizophoraceae
  2. Satyanarayana B, M Muslim A, Izzaty Horsali NA, Mat Zauki NA, Otero V, Nadzri MI, et al.
    PeerJ, 2018;6:e4397.
    PMID: 29479500 DOI: 10.7717/peerj.4397
    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite-ALOS) and ground-truth (Point-Centred Quarter Method-PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such asNypa fruticans,Rhizophora apiculata,Sonneratia caseolaris,S. albaandXylocarpus granatumin the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok-suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution ofSonneratiaspp. as pioneer vegetation at shallow river mouths,N. fruticansin the areas of strong freshwater discharge,R. apiculatain the areas of strong neritic incursion andX. granatumat interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.
    Matched MeSH terms: Rhizophoraceae
  3. Kamaruzzaman BY, Ong MC, Jalal KC, Shahbudin S, Nor OM
    J Environ Biol, 2009 Sep;30(5 Suppl):821-4.
    PMID: 20143712
    The accumulative partitioning of Pb and Cu in the Rhizophora apiculata was studied randomly in the Setiu mangrove forest, Terengganu. Samples of leaves, barks and roots were collected randomly from the selected studied species. Sediments between the roots of the sampled mangrove plants were also collected. The results from analysis for Rhizophora apiculata shows that the concentration of Pb and Cu were accumulated higher in root tissue compared to bark and leaf tissue but lower than surrounding sediment level. The average concentration of Cu for Rhizophora apiculata in leaf, bark, root and sediment was 2.73, 3.94, 5.21 and 9.42 mg I(-1), respectively. Meanwhile, the average concentration of Pb in leaf, bark, root and sediment was 1.43, 1.38, 2.05 and 11.66 mg l(-1), respectively. Results of concentration factors (CF) show that the overall the concentration of Pb and Cu were accumulated much higher in roots system of Rhizophora apiculata.
    Matched MeSH terms: Rhizophoraceae/metabolism*
  4. Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ
    Bull Environ Contam Toxicol, 2008 Jul;81(1):52-6.
    PMID: 18506379 DOI: 10.1007/s00128-008-9460-3
    Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I(geo)) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.
    Matched MeSH terms: Rhizophoraceae/chemistry*
  5. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Rhizophoraceae/microbiology*
  6. Wolswijk G, Satyanarayana B, Dung LQ, Siau YF, Ali ANB, Saliu IS, et al.
    J Hazard Mater, 2020 04 05;387:121665.
    PMID: 31784131 DOI: 10.1016/j.jhazmat.2019.121665
    Charcoal production activities at the Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia have a potential to emit volatile compounds such as Hg back into the ambient environment, raising concerns on the public health and safety. The present study was aimed at analyzing Hg concentration from different plant/animal tissues and sediment samples (in total 786 samples) to understand clearly the Hg distribution at the MMFR. Leaves of Rhizophora spp. showed higher Hg concentration with an increasing trend from young, to mature, to senescent and decomposing stages, which was possibly due to accumulation of Hg over time. The low Hg concentration in Rhizophora roots and bark suggests a limited absorption from the sediments and a meagre accumulation/partitioning by the plant tissue, respectively. In the case of mangrove cockles the concentration of Hg was lower than the permissible limits for seafood consumption. Although the mangrove gastropod - Cassidula aurisfelis Bruguière had rather elevated Hg in the muscle tissue, it is still less than the environmental safely limit. Beside the chances of atmospheric deposition for Hg, the sediment samples were found to be unpolluted in nature, indicating that in general the MMFR is still safe in terms of Hg pollution.
    Matched MeSH terms: Rhizophoraceae/chemistry
  7. Ababneh B, Tajuddin AA, Hashim R, Shuaib IL
    Australas Phys Eng Sci Med, 2016 Dec;39(4):871-876.
    PMID: 27628943 DOI: 10.1007/s13246-016-0482-6
    This paper reports the novel use of almond gum as a binder in manufacturing Rhizophora spp. particleboard. X-ray fluorescence spectroscopy was employed for analysis under photon energy range of 16.6-25.3 keV. Results showed that almond gum-bonded Rhizophora spp. particleboard can be used as tissue-equivalent phantom in diagnostic radiation. The calculated mass attenuation coefficients of the particleboards were consistent with the values of water calculated using XCOM program for the same photon energies, with p values of 0.056, 0.069, and 0.077 for samples A8, C0, and C8, respectively. However, no direct relationship was found between the percentage of adhesive and the mass attenuation coefficient. The results positively supported the use of almond gum as a binding agent in the fabrication of particleboards, which can be used as a phantom material in dosimetric and quality control applications.
    Matched MeSH terms: Rhizophoraceae/metabolism*
  8. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, et al.
    BMC Evol. Biol., 2017 01 18;17(1):22.
    PMID: 28100168 DOI: 10.1186/s12862-016-0849-z
    BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

    RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.

    CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.

    Matched MeSH terms: Rhizophoraceae/growth & development*
  9. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al.
    Molecules, 2020 Nov 17;25(22).
    PMID: 33212836 DOI: 10.3390/molecules25225365
    Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
    Matched MeSH terms: Rhizophoraceae/microbiology*
  10. Asadpour R, Sapari NB, Isa MH, Orji KU
    Water Sci Technol, 2014 10 18;70(7):1220-8.
    PMID: 25325547 DOI: 10.2166/wst.2014.355
    Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. An assortment of commercial systems has been developed to control these spills, including the use of agricultural wastes as sorbents. This work deals with raw and modified mangrove barks (Rhizophora apiculata), an industrial lignocellulosic waste, as a low cost adsorbent for oil-product-spill cleanup in the aquatic environment. Mangrove bark was modified using fatty acids (oleic acid and palmitic acid) to improve its adsorption capacity. The oil sorption capacity of the modified bark was studied and compared with that of the raw bark. Kinetic tests were conducted with a series of contact times. The influence of particle size, oil dosage, pH and temperature on oil sorption capacity was investigated. The results showed that oleic acid treated bark has a higher sorption capacity (2,860.00 ± 2.00 mg/g) than untreated bark for Tapis crude oil. A correlation between surface functional groups, morphology and surface area of the adsorbent was studied by Fourier transform infrared spectrum, field emission scanning electron microscopy images and Brunauer-Emmett-Teller analysis. Isotherm study was conducted using the Langmuir and Freundlich isotherm models. The result showed that adsorption of crude oil on treated mangrove bark could be best described by the Langmuir model.
    Matched MeSH terms: Rhizophoraceae
  11. Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP
    Glob Chang Biol, 2019 Aug 29.
    PMID: 31465581 DOI: 10.1111/gcb.14813
    Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4 ) production in mangrove sediments. The establishment of non-native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C ha-1 , and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10-fold (to 4.5 Mg C ha-1 yr-1 ), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2-4%, equivalent to 30-60 Mg CO2 -eq ha-1 over mangrove lifetime (100-year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.
    Matched MeSH terms: Rhizophoraceae
  12. Samson DO, Jafri MZM, Shukri A, Hashim R, Sulaiman O, Aziz MZA, et al.
    Radiat Environ Biophys, 2020 08;59(3):483-501.
    PMID: 32333105 DOI: 10.1007/s00411-020-00844-z
    For the first time, Rhizophora spp. (Rh. spp.) particleboard phantoms were developed using defatted soy flour (DSF) and soy protein isolate (SPI) modified by sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (IA-PAE) adhesive. The microstructural characterization and X-ray diffraction patterns of the material revealed that the modified DSF and SPI adhesives became more compact and homogeneous when NaOH/IA-PAE was added, which prevented damage by moisture. It was confirmed that the composite is crystalline with (101), (002), and (004) orientations. Phantoms made of this material were scanned with X-ray computed tomography (CT) typically used for abdominal examinations with varying energies corresponding to 80, 120, and 135 kVp, to determine CT numbers, electron densities, and density distribution profiles. The radiation attenuation parameters were found to be not significantly different from those of water (XCOM) with p values [Formula: see text] 0.05 for DSF and SPI. The DSF- and SPI-based particleboard phantoms showed CT numbers close to those of water at the three X-ray CT energies. In addition, electron density and density distribution profiles of DSF-SPI-Rh. spp. particleboard phantoms with 15 wt% IA-PAE content were even closer to those of water and other commercial phantom materials at the three X-ray CT energies. It is concluded that DSF-SPI with NaOH/IA-PAE added can be used as a potential adhesive in Rh. spp. particleboard phantoms for radiation dosimetry.
    Matched MeSH terms: Rhizophoraceae
  13. Zuber SH, Hashikin NAA, Mohd Yusof MF, Aziz MZA, Hashim R
    Appl Radiat Isot, 2021 Apr;170:109601.
    PMID: 33515930 DOI: 10.1016/j.apradiso.2021.109601
    Experimental particleboards are made from Rhizophora spp. wood trunk with three different percentages of lignin and soy flour (0%, 6% and 12%) as adhesives. The objective was to investigate the equivalence of Rhizophora spp. particleboard as phantom material with human soft tissue using Computed Tomography (CT) number. The linear and mass attenuation coefficient of Rhizophora spp. particleboard at low energy range was also explored using X-ray Fluorescence (XRF) configuration technique. Further characterization of the particleboard was performed to determine the effective atomic number, Zeff using Energy Dispersive X-Ray (EDX) method. Adhesive-bonded Rhizophora spp. particleboard showed close similarities with water, based on the average CT numbers, electron density calibration curve and the analysis of CT density profile, compared to the binderless particleboard. The effective atomic number obtained from the study indicated that the attenuation properties of all the particleboards at different percentages of adhesives were almost similar to water. The mass attenuation coefficient calculated from XRF configuration technique showed good agreement with water from XCOM database, suggesting its potential as phantom material for radiation study.
    Matched MeSH terms: Rhizophoraceae
  14. Yusof MFM, Hamid PNKA, Tajuddin AA, Hashim R, Bauk S, Isa NM, et al.
    Radiol Phys Technol, 2017 Sep;10(3):331-339.
    PMID: 28718054 DOI: 10.1007/s12194-017-0408-3
    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm3. The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137Cs and 60Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.
    Matched MeSH terms: Rhizophoraceae
  15. Tan hs, Mohd Radzi Abas, Norhayati Mohd Tahir
    Sains Malaysiana, 2016;45:365-371.
    A study has been carried out to characterize hydrocarbons emitted from the burning of three tropical wood species. The woods were burned to ember and smoke aerosols emitted were sampled using high volume sampler fitted with a pre-cleaned glass fibre filters. Hydrocarbons were extracted using ultrasonic agitation with dichloromethane-methanol (3:1 v/v) as solvent and the extracts obtained were then fractionated on silica-alumina column. Detection and quantification of aliphatic and polycyclic aromatic hydrocarbons (PAHs) compounds were carried out using GC-MS. The results indicated that the major aliphatic hydrocarbons characterized were straight chain n-alkanes in the range of C12-C35 with Cmax in the range of C27-C33. Rhizophora apiculata and Hevea brasiliensis wood smoke exhibited a weak odd to even carbon number predominance with carbon preference index (CPI) values greater than one whereas Melaleuca cajuputi wood smoke aerosols did not exhibit similar pattern with CPI obtained close to one. The results obtained also indicated that burning of these wood resulted in formation of PAHs compounds in their smoke aerosols with predominance of three to four rings PAHs over the two, five and lesser of six rings PAHs. PAH diagnostic ratios calculated except for Flan/(Flan+Py) and Indeno/(Indeno+BgP) were consistent with the ratios suggested for wood combustion source as reported in literatures. In the case of the latter, two diagnostic ratios, the values were generally lower than the range normally reported for wood combustion.
    Matched MeSH terms: Rhizophoraceae
  16. Wahizatul Afzan Azmi, Roziah Ghazi, Nor Zalipah Mohamed
    Sains Malaysiana, 2012;41:1057-1062.
    A study on the importance of Xylocopa varipuncta (Hymenoptera: Apidae) as pollination agent was conducted at the Setiu Mangrove Forest, Terengganu from September to December 2010. The objective of this study was to identify the pollens collected by carpenter bees (X. varipuncta) in the mangrove community of Setiu Wetlands. A total of 35 types of pollens were collected from the body of X. varipuncta and only 10 types of the pollens were successfully identified. The identified pollens were of Avicennia alba, Lumnitzera racemosa, Sonneratia caseolaris, S. ovata and Rhizophora apiculata from exclusive mangroves, while Suregada multiflora, Melaleuca cajuputi, Derris trifoliata, Acacia auriculiformis and Hibiscus tiliaceus were from non-exclusive mangroves. Melaleuca cajuputi was the highest number of pollen carried by X. varipuncta. This study showed that X. varipuncta is an important pollen carrier in the mangrove community of Setiu Wetlands, Terengganu.
    Matched MeSH terms: Rhizophoraceae
  17. Wolswijk G, Satyanarayana B, Le QD, Siau YF, Ali ANB, Saliu IS, et al.
    Data Brief, 2020 Apr;29:105134.
    PMID: 32016142 DOI: 10.1016/j.dib.2020.105134
    This paper presents the results of mercury analysis on 786 abiotic (surface sediments) and biotic (plant and animal tissues) samples collected from 10 sites at Matang Mangrove Forest Reserve in Peninsular Malaysia. Sediment samples were collected at the surface level from both river bank and forest understory. Whereas plant tissues obtained from Rhizophora apiculata Blume and Rhizophora mucronata L. consisted of leaves (in four stages namely young, mature, senescent and decomposing), bark and roots (divided into xylem, cortex and epidermis), the animal samples were represented by muscle tissue of the gastropod Cassidula aurisfelis Bruguière and the cockle Tegillarca granosa L. The mercury concentration measurements were obtained through a cold vapor atomic absorption spectrometer. The core data have been analysed and interpreted in the paper "Distribution of mercury in sediments, plant and animal tissues in Matang Mangrove Forest Reserve, Malaysia" [1].
    Matched MeSH terms: Rhizophoraceae
  18. Fu X, Song X, Li X, Wong KK, Li J, Zhang F, et al.
    PMID: 28191021 DOI: 10.1155/2017/4365715
    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.
    Matched MeSH terms: Rhizophoraceae
  19. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Rhizophoraceae*
  20. Chaudhry GE, Rahman NH, Sevakumaran V, Ahmad A, Mohamad H, Zafar MN, et al.
    J Adv Pharm Technol Res, 2020 10 10;11(4):233-237.
    PMID: 33425710 DOI: 10.4103/japtr.JAPTR_81_20
    Breast cancer is among the frequently occurring cancer worldwide. The foremost underline aim of this study was to determine the growth inhibitory effect along with mechanistic study of a Bruguiera gymnorrhiza extract on MCF-7. The cytotoxicity activity was determined by using the MTS assay. Butanol extract exhibited the maximum cytotoxicity activity against the MCF-7 cells with IC50 of 3.39 μg/mL, followed by diethyl ether and methanol extract (IC50 at 16.22 μg/mL and 37.15 μg/mL, respectively) at 72 h. The DeadEndTM Colorimetric Apoptosis Detection System confirmed the induction of apoptosis (via DNA fragmentation) in MCF-7 cells. Both butanol and diethyl ether extracts of B. gymnorrhiza significantly increase the caspase-3 level. However, the diethyl ether extract induced higher caspase-9 levels compared to caspase-8, suggesting that the intrinsic pathway was the major route in the process of apoptosis. Thin-layer chromatography profiling demonstrated the presence of phenolic, terpene, and alkaloid compounds in crude methanol, diethyl ether, and butanol extracts. The phytochemicals present in the extracts of B. gymnorrhiza might have the potential to be a future therapeutic agent against breast cancer.
    Matched MeSH terms: Rhizophoraceae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links