Displaying publications 21 - 40 of 125 in total

Abstract:
Sort:
  1. Chang PY, Fong MY, Nissapatorn V, Lau YL
    Am J Trop Med Hyg, 2011 Sep;85(3):485-9.
    PMID: 21896809 DOI: 10.4269/ajtmh.2011.11-0351
    Rhoptry protein 2 (ROP2) of Toxoplasma gondii is a rhoptry-secreted protein that plays a critical role in parasitophorous vacuole membrane formation during invasion. In previous studies, ROP2 has been shown to be efficient in triggering humoral and cell-mediated responses. High immunogenicity of ROP2 makes it a potential candidate for diagnosis and vaccination against toxoplasmosis. In this study, the ROP2 gene was cloned into pPICZα A expression vector and extracellularly expressed in the yeast Pichia pastoris, which has numerous advantages over other expression systems for eukaryotic proteins expression. The effectiveness of the secreted recombinant ROP2 as a diagnosis agent was assessed by Western Blot with 200 human serum samples. Recombinant ROP2 reacted with toxoplasmosis-positive human serum samples and yielded an overall sensitivity of 90% and specificity of 95%. However, recombinant ROP2 is a better marker for detection of IgG (91.7%) rather than IgM (80%).
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/metabolism*
  2. Chew WK, Wah MJ, Ambu S, Segarra I
    Exp Parasitol, 2012 Jan;130(1):22-5.
    PMID: 22027550 DOI: 10.1016/j.exppara.2011.10.004
    Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
    Matched MeSH terms: Toxoplasma/growth & development; Toxoplasma/physiology*
  3. Loh FK, Nathan S, Chow SC, Fang CM
    Vaccine, 2019 07 09;37(30):3989-4000.
    PMID: 31186188 DOI: 10.1016/j.vaccine.2019.05.083
    Since the discovery of Toxoplasma gondii in 1908, it is estimated that one-third of the global population has been exposed to this ubiquitous intracellular protozoan. The complex life cycle of T. gondii has enabled itself to overcome stress and transmit easily within a broad host range thus achieving a high seroprevalence worldwide. To date, toxoplasmosis remains one of the most prevalent HIV-associated opportunistic central nervous system infections. This review presents a comprehensive overview of different vaccination approaches ranging from traditional inactivated whole-T. gondii vaccines to the popular DNA vaccines. Extensive discussions are made to highlight the challenges in constructing these vaccines, selecting adjuvants as well as delivery methods, immunisation approaches and developing study models. Herein we also deliberate over the latest and promising enhancement strategies that can address the limitations in developing an effective T. gondii prophylactic vaccine.
    Matched MeSH terms: Toxoplasma/immunology*; Toxoplasma/pathogenicity*
  4. Lai MY, Abdul-Majid N, Lau YL
    Acta Parasitol, 2019 Sep;64(3):575-581.
    PMID: 31165984 DOI: 10.2478/s11686-019-00066-4
    Toxoplasma gondii is one of the most successful human pathogens. To eliminate the infection, identification of receptors or binding partners from humans is indeed urgent. T. gondii surface antigen is the ultimate component involved during the attachment of parasite into host cell. However, mechanism of invasion between SAG and host-cell membrane remains unclear. Yeast two-hybrid experiment was used to identify the binding partners from cDNA human library by using T. gondii SAG1 as bait. Mated yeast cells were plated on DDO/X plates to confirm only prey plasmid that expressing interacting protein was selected. We detected 39 clones interacted with SAG1 based on a series of the selection procedures. After colony PCR, only 29 clones were positive and subsequently sent for sequencing. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. Twenty-two clones were further examined by small-scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens lysine-rich coil-coiled and SAG1 protein, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG1 protein was significant (Mann-Whitney U test, Z = - 1.964, P = 0.05). H. sapiens lysine-rich coil-coiled protein was found to be interacted with SAG1. This prey protein may serve as the potential drug target in vaccination study.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/metabolism*
  5. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y
    J Clin Microbiol, 2010 Oct;48(10):3698-702.
    PMID: 20660217 DOI: 10.1128/JCM.00462-10
    Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5%) than the SAG1-LAMP (80%), B1-LAMP (80%), and nested PCR (62.5%). All the LAMP assays and nested PCR were 100% specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/isolation & purification*
  6. Omar A, Bakar OC, Adam NF, Osman H, Osman A, Suleiman AH, et al.
    Korean J Parasitol, 2015 Feb;53(1):29-34.
    PMID: 25748706 DOI: 10.3347/kjp.2015.53.1.29
    The aim of this cross sectional case control study was to examine the serofrequency and serointensity of Toxoplasma gondii (Tg) IgG, IgM, and DNA among patients with schizophrenia. A total of 101 patients with schizophrenia and 55 healthy controls from Sungai Buloh Hospital, Selangor, Malaysia and University Malaya Medical Center (UMMC) were included in this study. The diagnosis of schizophrenia was made based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The presence of Tg infection was examined using both indirect (ELISA) and direct (quantitative real-time PCR) detection methods by measuring Tg IgG and IgM and DNA, respectively. The serofrequency of Tg IgG antibodies (51.5%, 52/101) and DNA (32.67%, 33/101) among patients with schizophrenia was significantly higher than IgG (18.2%, 10/55) and DNA (3.64%, 2/55) of the controls (IgG, P=0.000, OD=4.8, CI=2.2-10.5; DNA, P=0.000, OD=12.9, CI=2.17-10.51). However, the Tg IgM antibody between patients with schizophrenia and controls was not significant (P>0.005). There was no significant difference (P>0.005) in both serointensity of Tg IgG and DNA between patients with schizophrenia and controls. These findings have further demonstrated the strong association between the active Tg infection and schizophrenia.
    Matched MeSH terms: Toxoplasma/classification; Toxoplasma/genetics; Toxoplasma/immunology; Toxoplasma/isolation & purification*
  7. Puvanesuaran VR, Noordin R, Balakrishnan V
    Avian Dis, 2013 Mar;57(1):128-32.
    PMID: 23678741
    Toxoplasma gondii is a parasitic protozoan that infects nearly one-third of humans. The present study was performed to isolate and genotype T. gondii from free-range ducks in Malaysia. Sera, heads, and hearts from 205 ducks were obtained from four states in Peninsular Malaysia, and 30 (14.63%) sera were found to be seropositive when assayed with the modified agglutination test (MAT > or = 1:6). All the positive samples were inoculated into mice, and T. gondii was successfully isolated from four individual duck samples (1.95%), which were initially found to be strongly seropositive (MAT > or = 1:24). The isolates were subjected to PCR-RFLP analysis, and two T. gondii strains were identified: type I and type II. This is the first reported study on the genetic characterization of T. gondii isolates from free-range farm animals in Southeast Asia.
    Matched MeSH terms: Toxoplasma/classification*; Toxoplasma/genetics*; Toxoplasma/immunology; Toxoplasma/isolation & purification
  8. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, et al.
    Microb Pathog, 2013 Jan;54:60-6.
    PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006
    Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/immunology*
  9. Kavitha N, Noordin R, Kit-Lam C, Sasidharan S
    Molecules, 2012 Aug 02;17(8):9207-19.
    PMID: 22858841 DOI: 10.3390/molecules17089207
    The inhibitory effect of active fractions of Eurycoma longifolia (E. longifolia) root, namely TAF355 and TAF401, were evaluated against Toxoplasma gondii (T. gondii). In our previous study, we demonstrated that T. gondii was susceptible to TAF355 and TAF401 with IC₅₀ values of 1.125 µg/mL and 1.375 µg/mL, respectively. Transmission (TEM) and scanning electron microscopy (SEM) observations were used to study the in situ antiparasitic activity at the IC₅₀ value. Clindamycin was used as positive control. SEM examination revealed cell wall alterations with formation of invaginations followed by completely collapsed cells compared to the normal T. gondii cells in response to the fractions. The main abnormality noted via TEM study was decreased cytoplasmic volume, leaving a state of structural disorganization within the cell cytoplasm and destruction of its organelles as early as 12 h of treatment, which indicated of rapid antiparasitic activity of the E. longifolia fractions. The significant antiparasitic activity shown by the TAF355 and TAF401 active fractions of E. longifolia suggests their potential as new anti-T. gondii agent candidates.
    Matched MeSH terms: Toxoplasma/drug effects*; Toxoplasma/ultrastructure
  10. Kavitha N, Noordin R, Chan KL, Sasidharan S
    PMID: 22781137 DOI: 10.1186/1472-6882-12-91
    Toxoplasma gondii infection causes toxoplasmosis, an infectious disease with worldwide prevalence. The limited efficiency of drugs against this infection, their side effects and the potential appearance of resistant strains make the search of novel drugs an essential need. We examined Eurycoma longifolia root extract and fractions as potential sources of new compounds with high activity and low toxicity. The main goal of this study was to investigate the anti-T. gondii activity of crude extract (TACME) and four fractions (TAF 273, TAF 355, TAF 191 and TAF 401) from E. longifolia, with clindamycin as the positive control.
    Matched MeSH terms: Toxoplasma/drug effects*; Toxoplasma/physiology
  11. Yeng C, Osman E, Mohamed Z, Noordin R
    Electrophoresis, 2010 Dec;31(23-24):3843-9.
    PMID: 21080484 DOI: 10.1002/elps.201000038
    Toxoplasma gondii infection in pregnant women may result in abortion and foetal abnormalities, and may be life-threatening in immunocompromised hosts. To identify the potential infection markers of this disease, 2-DE and Western blot methods were employed to study the parasite circulating antigens and host-specific proteins in the sera of T. gondii-infected individuals. The comparisons were made between serum protein profiles of infected (n=31) and normal (n=10) subjects. Antigenic proteins were identified by immunoblotting using pooled sera and monoclonal anti-human IgM-HRP. Selected protein spots were characterised using mass spectrometry. Prominent differences were observed when serum samples of T. gondii-infected individuals and normal controls were compared. A significant up-regulation of host-specific proteins, α(2)-HS glycoprotein and α(1)-B glycoprotein, was also observed in the silver-stained gels of both active and chronic infections. However, only α(2)-HS glycoprotein and α(1)-B glycoprotein in the active infection showed immunoreactivity in Western blots. In addition, three spots of T. gondii proteins were detected, namely (i) hypothetical protein chrXII: 3984434-3 TGME 49, (ii) dual specificity protein phosphatase, catalytic domain TGME 49 and (iii) NADPH-cytochrome p450 reductase TGME 49. Thus, 2-DE approach followed by Western blotting has enabled the identification of five potential infection markers for the diagnosis of toxoplasmosis: three are parasite-specific proteins and two are host-specific proteins.
    Matched MeSH terms: Toxoplasma/isolation & purification*; Toxoplasma/metabolism
  12. Wan KL, Chang TL, Ajioka JW
    J. Biochem. Mol. Biol., 2004 Jul 31;37(4):474-9.
    PMID: 15469736
    The expressed sequence tag (EST) effort in Toxoplasma gondii has generated a substantial amount of gene information. To exploit this valuable resource, we chose to study tgd057, a novel gene identified by a large number of ESTs that otherwise show no significant match to known sequences in the database. Northern analysis showed that tgd057 is transcribed in this tachyzoite. The complete cDNA sequence of tgd057 is 1169 bp in length. Sequence analysis revealed that tgd057 possibly adopts two polyadenylation sites, utilizes the fourth in-frame ATG for translation initiation, and codes for a secretory protein. The longest open reading frame for the tgd057 gene was cloned and expressed as a recombinant protein (rd57) in Escherichia coli. Western analysis revealed that serum against rd57 recognized a molecule of ~21 kDa in the tachyzoite protein extract. This suggests that the tgd057 gene is expressed in vivo in the parasite.
    Matched MeSH terms: Toxoplasma/genetics*; Toxoplasma/metabolism
  13. Ching XT, Lau YL, Fong MY, Nissapatorn V
    Parasitol Res, 2013 Mar;112(3):1229-36.
    PMID: 23274488 DOI: 10.1007/s00436-012-3255-5
    Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the food industry. Commonly used serological tests involve preparation of whole Toxoplasma lysate antigens from tachyzoites which are costly and hazardous. An alternative method for better antigen production involving the prokaryotic expression system was therefore used in this study. Recombinant dense granular protein, GRA2, was successfully cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of this purified antigen for diagnosis of human infections was evaluated through western blot analysis against 100 human serum samples. Results showed that the rGRA2 protein has 100 and 61.5 % sensitivity towards acute and chronic infection, respectively, in T. gondii-infected humans, indicating that this protein is useful in differentiating present and past infections. Therefore, it is suitable to be used as a sensitive and specific molecular marker for the serodiagnosis of Toxoplasma infection in both humans and animals.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/immunology
  14. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    Parasit Vectors, 2015;8:315.
    PMID: 26062975 DOI: 10.1186/s13071-015-0932-0
    Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/immunology*
  15. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Toxoplasma/immunology*; Toxoplasma/chemistry*
  16. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL
    Am J Trop Med Hyg, 2013 May;88(5):883-7.
    PMID: 23509124 DOI: 10.4269/ajtmh.12-0727
    Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific proliferation of spleen cells, and production of high levels of IFN-γ (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
    Matched MeSH terms: Toxoplasma/genetics; Toxoplasma/immunology*; Toxoplasma/pathogenicity
  17. Normaznah Y, Saniah K, Fuzina Noor H, Naseem M, Khatijah M
    Trop Biomed, 2004 Dec;21(2):157-9.
    PMID: 16493409
    A survey was carried out to determine the prevalence of Toxoplasma gondii antibodies among cattle farmers and cattle in the Gombak District, Selangor. A total of 79 human and 73 cattle serum samples were tested for Toxoplasma gondii antibodies by the immunofluorescent technique (IFAT). Results of the survey showed that anti-Toxoplasma gondii antibodies were found in 27.8% of the farmers, while in cattle the positive rate was only 3.8%. The prevalence rate obtained in this study did not differ much from the prevalence reported in previous studies. This suggests that the same degree of risk to this infection exists in the community. In view of the relatively low antibody prevalence in cattle, the risk of acquiring this infection from consuming undercooked beef is realtively low. Further survey on larger sample size is needed to validate the observation.
    Matched MeSH terms: Toxoplasma
  18. Hanafy NA, Badr MS, Nasr GM
    Open Access Maced J Med Sci, 2018 Sep 25;6(9):1577-1580.
    PMID: 30337968 DOI: 10.3889/oamjms.2018.400
    BACKGROUND: Toxoplasma gondii is a common parasitic infection of humans. Infection is usually mild. Serious complications can occur in pregnant and immunocompromised patients.

    AIM: The present study aims to investigate the performance of 2 different PCR protocols; real-time quantitative molecular assays (qPCR) and conventional molecular assays (cPCR), using 2 different sets of primers and by using cloned purified Toxoplasma genomic substances to be evaluated as reference samples.

    METHODS: The target DNA was provided in 8 different quantities.

    RESULTS: Amplification failure was reported only with the cPCR in samples of low concentrations using both primer sets. Quantitative PCR detected the 8 different dilutions of the purified Toxoplasma gondii using the 2 sets of primers while cPCR was sensitive to detect only 6 different dilutions.

    CONCLUSION: Generally real-time quantitative molecular assays, is easy to use method compared to conventional PCR assay and produces more reliable results within only one hour time but still the possible application of qPCRs in routine diagnosis necessitates analysis of a large number of clinical samples in further studies to make the proper choice.

    Matched MeSH terms: Toxoplasma
  19. Lim SS, Othman RY
    Korean J Parasitol, 2014 Dec;52(6):581-93.
    PMID: 25548409 DOI: 10.3347/kjp.2014.52.6.581
    Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
    Matched MeSH terms: Toxoplasma/immunology*
  20. Ching XT, Lau YL, Fong MY, Nissapatorn V, Andiappan H
    Biomed Res Int, 2014;2014:690529.
    PMID: 24987700 DOI: 10.1155/2014/690529
    Toxoplasma gondii infects all warm-blooded animals, including humans, causing serious public health problems and great economic loss for the food industry. Commonly used serological tests require costly and hazardous preparation of whole Toxoplasma lysate antigens from tachyzoites. Here, we have evaluated an alternative method for antigen production, which involved a prokaryotic expression system. Specifically, we expressed T. gondii dense granular protein-5 (GRA5) in Escherichia coli and isolated it by affinity purification. The serodiagnostic potential of the purified recombinant GRA5 (rGRA5) was tested through Western blot analysis against 212 human patient serum samples. We found that rGRA5 protein was 100% specific for analysis of toxoplasmosis-negative human sera. Also, rGRA5 was able to detect acute and chronic T. gondii infections (sensitivities of 46.8% and 61.2%, resp.).
    Matched MeSH terms: Toxoplasma*; Toxoplasmosis/blood*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links