Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Thayan R, Huat TL, See LL, Tan CP, Khairullah NS, Yusof R, et al.
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):413-9.
    PMID: 19203772 DOI: 10.1016/j.trstmh.2008.12.018
    Dengue infection is a major public health problem affecting millions of people living in tropical countries. With no suitable vaccines and specific antiviral drugs, treatment for dengue is usually symptomatic and supportive. Early diagnosis and recognition of severe disease is therefore crucial for better management of the patient. Two-dimension electrophoresis was used to identify disease-associated proteins that can be used for diagnosis and as drug targets for treatment. Two markers, identified by mass spectrometry analysis as alpha1-antitrypsin and NS1 proteins were found to be upregulated in dengue fever (DF; n=10) and dengue haemorrhagic fever (DHF; n=10) patients compared with healthy individuals (n=8). Both alpha1-antitrypsin and NS1 proteins were overexpressed two-fold in DHF patients compared with DF patients. Our study suggests that alpha1-antitrypsin and NS1 protein could be used as biomarkers as early indicators of DHF risk among patients with suspected dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood; Viral Nonstructural Proteins/immunology*
  2. Osman O, Fong MY, Devi S
    PMID: 18567445
    A preliminary study of dengue infection in Brunei between 2005 and 2006 showed that dengue 2 was the predominant serotype. A total of five DEN-2 isolates were isolated and maintained in the mosquito cell-line, albopictus C6/36. The sequence spanning the envelope and non-structural protein 1 (E/NS1) junction (positions 2311 to 2550) of the isolates were determined and analysed at the amino acid and nucleotide levels. Alignment of the 240 nucleotide sequences among the five isolates showed changes occurring at 7 positions (2.9%) of the region. All but one nucleotide substitution (position 2319, amino acid 742 V --> F) were found at the 3rd position of the codons and were silent mutations. Amino acid homology ranged from 98% to 100%. Sequence divergence of the Brunei isolates varied from 5% to 6.6% compared with dengue-2 prototype New Guinea C strain. Comparison of the Brunei DEN-2 isolates with sixty-five other strains placed them in a cluster containing Indonesian strains isolated in 1973, 1978 and 2004 and Malaysian strains isolated in 1996, 1998 and 1999 in genotype group IV.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  3. Kong YY, Thay CH, Tin TC, Devi S
    J Virol Methods, 2006 Dec;138(1-2):123-30.
    PMID: 17000012 DOI: 10.1016/j.jviromet.2006.08.003
    The use of the polymerase chain reaction (PCR) in molecular diagnosis is now accepted worldwide and has become an essential tool in the research laboratory. In the laboratory, a rapid detection, serotyping and quantitation, one-step real-time RT-PCR assay was developed for dengue virus using TaqMan probes. In this assay, a set of forward and reverse primers were designed targeting the serotype conserved region at the NS5 gene, at the same time flanking a variable region for all four serotypes which were used to design the serotype-specific TaqMan probes. This multiplex one-step RT-PCR assay was evaluated using 376 samples collected during the year 2003. These groups included RNA from prototype dengue virus (1-4), RNA from acute serum from which dengue virus was isolated, RNA from tissue culture supernatants of dengue virus isolated, RNA from seronegative acute samples (which were culture and IgM negative) and RNA from samples of dengue IgM positive sera. The specificity of this assay was also evaluated using a panel of sera which were positive for other common tropical disease agents including herpes simplex virus, cytomegalovirus, measles virus, varicella-zoster virus, rubella virus, mumps virus, WWF, West Nile virus, Japanese encephalitis virus, S. typhi, Legionella, Leptospira, Chlamydia, and Mycoplasma. The sensitivity, specificity and real-time PCR efficiency of this assay were 89.54%, 100% and 91.5%, respectively.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  4. Appanna R, Huat TL, See LL, Tan PL, Vadivelu J, Devi S
    Clin Vaccine Immunol, 2007 Aug;14(8):969-77.
    PMID: 17567768
    Dengue virus infections are a major cause of morbidity and mortality in tropical and subtropical areas in the world. Attempts to develop effective vaccines have been hampered by the lack of understanding of the pathogenesis of the disease and the absence of suitable experimental models for dengue viral infection. The magnitude of T-cell responses has been reported to correlate with dengue disease severity. Sixty Malaysian adults with dengue viral infections were investigated for their dengue virus-specific T-cell responses to 32 peptides antigens from the structural and nonstructural regions from a dengue virus isolate. Seventeen different peptides from the C, E, NS2B, NS3, NS4A, NS4B, and NS5 regions were found to evoke significant responses in a gamma interferon enzyme-linked immunospot (ELISPOT) assay of samples from 13 selected patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). NS3 and predominantly NS3(422-431) were found to be important T-cell targets. The highest peaks of T-cell responses observed were in responses to NS3(422-431) and NS5(563-571) in DHF patients. We also found almost a sevenfold increase in T-cell response in three DHF patients compared to three DF patient responses to peptide NS3(422-431). A large number of patients' T cells also responded to the NS2B(97-106) region. The ELISPOT analyses also revealed high frequencies of T cells that recognize both serotype-specific and cross-reactive dengue virus antigens in patients with DHF.
    Matched MeSH terms: Viral Nonstructural Proteins/immunology*; Viral Nonstructural Proteins/chemistry
  5. Willeam Peter SS, Hassan SS, Khei Tan VP, Ngim CF, Azreen Adnan NA, Pong LY, et al.
    Vector Borne Zoonotic Dis, 2019 07;19(7):549-552.
    PMID: 30668248 DOI: 10.1089/vbz.2018.2379
    Background:
    There is an escalation of frequency and magnitude of dengue epidemics in Malaysia, with a concomitant increase in patient hospitalization. Prolonged hospitalization (PH) due to dengue virus (DENV) infections causes considerable socioeconomic burden. Early identification of patients needing PH could optimize resource consumption and reduce health care costs. This study aims to identify clinicopathological factors present on admission that are associated with PH among patients with DENV infections.
    Methods:
    This study was conducted in a tertiary referral hospital in Southern Malaysia. Relevant clinical and laboratory data upon admission were retrieved from medical records of 253 consecutive DENV nonstructural protein 1 (NS1) antigen and PCR-positive hospitalized patients. The DENV serotype present in each patient was determined. Patients were stratified based on duration of hospital stay (<4 vs. ≥4 days). Data were analyzed using IBM® SPSS® 25.0. Multivariate logistic regression was performed to examine the association between PH and admission parameters.
    Results:
    Of 253 DENV hospitalized patients, 95 (37.5%) had PH (≥4 days). The mean duration of hospital stay was 3.43 ± 2.085 days (median = 3 days, interquartile range = 7 days). Diabetes mellitus (adjusted odds ratio [AOR] = 6.261, 95% confidence interval [CI] = 2.130-18.406, p = 0.001), DENV-2 serotype (AOR = 2.581, 95% CI = 1.179-5.650, p = 0.018), duration of fever ≤4 days (AOR = 2.423, 95% CI = 0.872-6.734, p = 0.09), and a shorter preadmission fever duration (AOR = 0.679, 95% CI = 0.481-0.957, p = 0.027) were independently associated with PH. However, PH was not found to be associated with symptoms on admission, secondary DENV infections or platelet count, hematocrit, or liver enzyme levels on admission.
    Conclusions:
    Early identification of these factors at presentation may alert clinicians to anticipate and recognize challenges in treating such patients, leading to more focused management plans that may shorten the duration of hospitalization.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  6. Pritchard LI, Sendow I, Lunt R, Hassan SH, Kattenbelt J, Gould AR, et al.
    Virus Res, 2004 May;101(2):193-201.
    PMID: 15041187
    Bluetongue viruses (BTV) were isolated from sentinel cattle in Malaysia and at two sites in Indonesia. We identified eight serotypes some of which appeared to have a wide distribution throughout this region, while others were only isolated in Malaysia or Australia. Nearly half of the 24 known BTV serotypes have now been identified in Asia. Further, we investigated the genetic diversity of their RNA segments 3 and 10. Using partial nucleotide sequences of the RNA segment 3 (540 bp) which codes for the conserved core protein (VP3), the BTV isolates were found to be unique to the previously defined Australasian topotype and could be further subdivided into four distinct clades or genotypes. Certain of these genotypes appeared to be geographically restricted while others were distributed widely throughout the region. Similarly, the complete nucleotide sequences of the RNA segment 10 (822 bp), coding for the non-structural protein (NS3/3A), were also conserved and grouped into the five genotypes; the BTV isolates could be grouped into three Asian genotypes and two Nth American/Sth African genotypes.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/chemistry
  7. Zabrodskaya Y, Tsvetkov V, Shurygina AP, Vasyliev K, Shaldzhyan A, Gorshkov A, et al.
    Biophys Chem, 2024 Apr;307:107176.
    PMID: 38219420 DOI: 10.1016/j.bpc.2024.107176
    One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.
    Matched MeSH terms: Viral Nonstructural Proteins/chemistry
  8. Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, et al.
    Virol J, 2011;8:449.
    PMID: 21943222 DOI: 10.1186/1743-422X-8-449
    Japanese encephalitis virus (JEV) genotype V reemerged in Asia (China) in 2009 after a 57-year hiatus from the continent, thereby emphasizing a need to increase regional surveillance efforts. Genotypic characterization was performed on 19 JEV-positive mosquito pools (18 pools of Culex tritaeniorhynchus and 1 pool of Cx. bitaeniorhynchus) from a total of 64 positive pools collected from geographically different locations throughout the Republic of Korea (ROK) during 2008 and 2010.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/chemistry
  9. Muñoz-Moreno R, Martínez-Romero C, Blanco-Melo D, Forst CV, Nachbagauer R, Benitez AA, et al.
    Cell Rep, 2019 12 17;29(12):3997-4009.e5.
    PMID: 31851929 DOI: 10.1016/j.celrep.2019.11.070
    Influenza A viruses (IAVs) have a remarkable tropism in their ability to circulate in both mammalian and avian species. The IAV NS1 protein is a multifunctional virulence factor that inhibits the type I interferon host response through a myriad of mechanisms. How NS1 has evolved to enable this remarkable property across species and its specific impact in the overall replication, pathogenicity, and host preference remain unknown. Here we analyze the NS1 evolutionary landscape and host tropism using a barcoded library of recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes according to their ability to replicate in different hosts. The IAV NS1 genes appear to have taken diverse and random evolutionary pathways within their multiple phylogenetic lineages. In summary, the high evolutionary plasticity of this viral protein underscores the ability of IAVs to adapt to multiple hosts and aids in our understanding of its global prevalence.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism*
  10. Scaramozzino N, Crance JM, Drouet C, Roebuck JP, Drouet E, Jouan A, et al.
    Biochem Biophys Res Commun, 2002 May 31;294(1):16-22.
    PMID: 12054734
    Langat (LGT) virus, initially isolated in 1956 from ticks in Malaysia, is a naturally occurring nonpathogenic virus with a very close antigenicity to the highly pathogenic tick-borne encephalitis (TBE) Western subtype virus and TBE Far Eastern subtype virus. NS3, the second largest viral protein of LGT virus, is highly conserved among flaviviruses and contains a characteristic protease moiety (NS3 pro). NS3 pro represents an attractive target for anti-protease molecules against TBE virus. We report herein a purification method specially designed for NS3 pro of LGT using a strategy for proper refolding coupled with the enzymatic characterisation of the protein. Different p-nitroanilide substrates, defined on canonic sequences for their susceptibility to Ser-protease, were applied to the proteolytic assays of the protein. The highest values were obtained from substrates containing an Arg or Lys (amino acid) residue at the P1 position. This purification method will facilitate the future development of reliable testing procedures for anti-proteases directed to NS3 proteins.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  11. Abubakar MB, Aini I, Omar AR, Hair-Bejo M
    J Biomed Biotechnol, 2011;2011:414198.
    PMID: 21541235 DOI: 10.1155/2011/414198
    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1) avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1).
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*; Viral Nonstructural Proteins/metabolism
  12. Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, et al.
    J Mol Graph Model, 2015 Jul;60:24-33.
    PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008
    The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*; Viral Nonstructural Proteins/chemistry
  13. Lim SK, Othman R, Yusof R, Heh CH
    Chem Biol Drug Des, 2021 01;97(1):28-40.
    PMID: 32657543 DOI: 10.1111/cbdd.13756
    Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*; Viral Nonstructural Proteins/metabolism
  14. Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, et al.
    Curr Med Chem, 2020;27(30):4945-5036.
    PMID: 30514185 DOI: 10.2174/0929867326666181204155336
    To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
    Matched MeSH terms: Viral Nonstructural Proteins
  15. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F
    Viral Immunol, 2016 05;29(4):198-211.
    PMID: 26900835 DOI: 10.1089/vim.2015.0127
    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  16. Hasebe F, Parquet MC, Pandey BD, Mathenge EG, Morita K, Balasubramaniam V, et al.
    J Med Virol, 2002 Jul;67(3):370-4.
    PMID: 12116030
    A reverse transcription-polymerase chain reaction (RT-PCR) was developed for the detection of Chikungunya virus infection. Based on the nonstructural protein 1 (nsP1) and glycoprotein E1 (E1) genes of Chikungunya, two primer sets were designed. Total RNA were extracted from the cell culture fluid of Aedes albopictus C6/36 cells inoculated with the S27 prototype virus, isolated in Tanzania in 1953, and the Malaysian strains (MALh0198, MALh0298, and MALh0398), isolated in Malaysia in 1998. For both sets of RNA samples, the expected 354- and 294-base pair (bp) cDNA fragments were amplified effectively from the nsP1 and E1 genes, respectively. Phylogenetic analysis was conducted for the Malaysian strain and other virus strains isolated from different regions in the world endemic for Chikungunya, using partial E1 gene sequence data. The Malaysian strains isolated during the epidemics of 1998 fell into a cluster with other members of the Asian genotype.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism; Viral Nonstructural Proteins/chemistry
  17. Thayan R, Morita K, Vijayamalar B, Zainah S, Chew TK, Oda K, et al.
    PMID: 9444025
    The aim of this study was to determine whether mutations could occur in the dengue virus genome following three subpassages of the virus in a mosquito cell line. This was done because sources of virus isolates used for sequencing studies are usually maintained in cell lines rather than in patients' sera. Therefore it must be assured that no mutation occurred during the passaging. For this purpose, sequencing was carried out using the polymerase chain reaction (PCR) products of the envelope/non-structural protein 1 junction region (280 nucleotides) of dengue type 3 virus. Sequence data were compared between the virus from a patient's serum against the virus subpassaged three times in the C6/36 cell line. We found that the sequence data of the virus from serum was identical to the virus that was subpassaged three times in C6/36 cell line.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  18. Zin K, Morita K, Igarashi A
    Microbiol. Immunol., 1995;39(8):581-90.
    PMID: 7494497
    We determined the 240-nucleotide sequences of the E/NS1 gene junction of four dengue-2 viruses by the primer extension dideoxy chain termination method. These viruses were isolated from dengue patients with different clinical severities in Nakhon Phanom, Northeastern Thailand in 1993. The results were compared with the 52 published dengue-2 sequences of the same gene region. Sequence divergence of four new isolates varied from 4.17% to 5.42% compared with dengue-2 prototype New Guinea C strain whereas it varied from 5.42% to 6.67% and from 6.67% to 7.09% when compared with Jamaica 1409 strain and PR159/S1 strain, respectively. All nucleotide substitutions were found at the 3rd position of the codons which were silent mutations. All 56 isolates studied were classified into five genotypic groups by constructing the dendrogram. The results indicated that four new isolates from Northeastern Thailand belong to genotype II of dengue virus serotype 2, and were most closely related to prototype New Guinea C strain. We also observed the variation in nucleotide and amino acid sequences among clusters of isolates (Thailand-1980, Malaysia-1989 and Thailand-1993) which were obtained from the dengue patients with different clinical severities. The significance of these genetic differences have been discussed in terms of the possible correlation between genetic variability and virulence.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  19. Darwish NT, Sekaran SD, Alias Y, Khor SM
    J Pharm Biomed Anal, 2018 Feb 05;149:591-602.
    PMID: 29197806 DOI: 10.1016/j.jpba.2017.11.064
    The sharp increase in incidence of dengue infection has necessitated the development of methods for the rapid diagnosis of this deadly disease. Here we report the design and development of a reliable, sensitive, and specific optical immunosensor for the detection of the dengue nonstructural protein 1 (NS1) biomarker in clinical samples obtained during early stages of infection. The present optical NS1 immunosensor comprises a biosensing surface consisting of specific monoclonal NS1 antibody for immunofluorescence-based NS1 antigen determination using fluorescein isothiocyanate (FITC) conjugated to IgG antibody. The linear range of the optical immunosensor was from 15-500ngmL-1, with coefficient of determination (R2) of 0.92, high reproducibility (the relative standard deviation obtained was 2%), good stability for 21days at 4°C, and low detection limit (LOD) at 15ngmL-1. Furthermore, the optical immunosensor was capable of detecting NS1 analytes in plasma specimens from patients infected with the dengue virus, with low cross-reaction with plasma specimens containing the Japanese encephalitis virus (JEV) and Zika virus. No studies have been performed on the reproducibility and cross-reactivity regarding NS1 specificity, which is thus a limitation for optical NS1 immunosensors. In contrast, the present study addressed these limitations carefully where these two important experiments were conducted to showcase the robustness of our newly developed optical-based fluorescence immunosensor, which can be practically used for direct NS1 determination in any untreated clinical sample.
    Matched MeSH terms: Viral Nonstructural Proteins/blood; Viral Nonstructural Proteins/immunology; Viral Nonstructural Proteins/isolation & purification*
  20. Norazharuddin H, Lai NS
    Malays J Med Sci, 2018 Sep;25(5):6-15.
    PMID: 30914859 DOI: 10.21315/mjms2018.25.5.2
    Dengue is a neglected disease caused by the infection of dengue virus which is transmitted by Aedes mosquitoes and to some, it could be fatal. Regardless of the enormous work devoted to research for the treatment of dengue, to this day there is no cure, and treatment is solely limited to supportive care by treating the symptoms. The inhibition of the viral RNA non-structural enzymes has been the most popular approach amongst the strategies applied to the search and development of dengue antivirals. This review is a compact digest of what is already known of the roles and the prospects of the dengue virus non-structural proteins NS1, NS2BNS3, NS4A, NS4B and NS5 as the targets for antiviral studies including the recent progress that has been published regarding their roles.
    Matched MeSH terms: Viral Nonstructural Proteins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links