METHODS: This observational study was conducted between December 2018 and October 2019 at 25 PHCs in three regions in Malaysia. Each PHC was linked to one or more hospitals, for referral of seropositive participants for confirmatory testing and pretreatment evaluation. Treatment was provided in PHCs for non-cirrhotic patients and at hospitals for cirrhotic patients.
RESULTS: During the study period, a total of 15 366 adults were screened at the 25 PHCs, using RDTs for HCV antibodies. Of the 2020 (13.2%) HCV antibody-positive participants, 1481/2020 (73.3%) had a confirmatory viral load test, 1241/1481 (83.8%) were HCV RNA-positive, 991/1241 (79.9%) completed pretreatment assessment, 632/991 (63.8%) initiated treatment, 518/632 (82.0%) completed treatment, 352/518 (68.0%) were eligible for a sustained virological response (SVR) cure assessment, 209/352 (59.4%) had an SVR cure assessment, and SVR was achieved in 202/209 (96.7%) patients. A significantly higher proportion of patients referred to PHCs initiated treatment compared with those who had treatment initiated at hospitals (71.0% vs 48.8%, p<0.001).
CONCLUSIONS: This study demonstrated the effectiveness and feasibility of a simplified decentralised HCV testing and treatment model in primary healthcare settings, targeting high-risk groups in Malaysia. There were good outcomes across most steps of the cascade of care when treatment was provided at PHCs compared with hospitals.
METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.
FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.
INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.
FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.
METHODS: EU-COVAT-1-AGED Part A is a randomised controlled, adaptive, multicentre phase II trial evaluating safety and immunogenicity of a 3rd vaccination (1st booster) in individuals ≥75 years. Fifty-three participants were randomised to full-doses of either mRNA-1273 (Spikevax®, 100 µg) or BNT162b2 (Comirnaty®, 30 µg). The primary endpoint was the rate of 2-fold circulating antibody titre increase 14 days post-vaccination measured by quantitative electrochemiluminescence (ECL) immunoassay, targeting RBD region of Wuhan wild-type SARS-CoV-2. Secondary endpoints included the changes in neutralising capacity against wild-type and 25 variants of concern at 14 days and up to 12 months. Safety was assessed by monitoring of solicited adverse events (AEs) for seven days after on-study vaccination. Unsolicited AEs were collected until the end of follow-up at 12 months, SAEs were pursued for a further 30 days.
RESULTS: Between 08th of November 2021 and 04th of January 2022, 53 participants ≥75 years received a COVID-19 vaccine as 1st booster. Fifty subjects (BNT162b2 n = 25/mRNA-1273 n = 25) were included in the analyses for immunogenicity at day 14. The primary endpoint of a 2-fold anti-RBD IgG titre increase 14 days after vaccination was reached for all subjects. A 3rd vaccination of full-dose mRNA-1273 provided higher anti-RBD IgG titres (Geometric mean titre) D14 mRNA-127310711 IU/mL (95 %-CI: 8003;14336) vs. BNT162b2: 7090 IU/mL (95 %-CI: 5688;8837). We detected a pattern showing higher neutralising capacity of full-dose mRNA-1273 against wild-type as well as for 23 out of 25 tested variants.
INTERPRETATION: Third doses of either BNT162b2 or mRNA-1273 provide substantial circulating antibody increase 14 days after vaccination. Full-dose mRNA-1273 provides higher antibody levels with an overall similar safety profile for people ≥75 years.
FUNDING: This trial was funded by the European Commission (Framework Program HORIZON 2020).
METHODS: We first reviewed the literature on the major types, severity, prevalence, and duration of suffering associated with cervical cancer. We then conducted a modified Delphi process with experts in cervical cancer care to supplement the literature. For each type of suffering, we distinguished between decedents (those who die from cervical cancer in a given year) and nondecedents (those who have cervical cancer in a given year but do not die). By applying the suffering prevalence and duration estimates to the number of decedents, nondecedents, and family caregivers in 2017, we were able to estimate their palliative care needs and the intensity of palliative care needed to respond adequately to this suffering.
RESULTS: There is a high prevalence among decedents of moderate or severe pain (84%), vaginal discharge (66%), vaginal bleeding (61%), and loss of faith (31%). Among both decedents and nondecedents, there is a high prevalence of clinically significant anxiety (63% and 50%, respectively), depressed mood (52% and 38%, respectively), and sexual dysfunction (87% and 83%, respectively). Moderate or severe financial distress is prevalent among decedents, nondecedents, and family caregivers (84%, 74%, and 66%, respectively). More than 40% of decedents and nondecedents are abandoned by their intimate partners. Most patients experience some combination of moderate or severe physical, psychological, social, and spiritual suffering. In total, 258,649 decedents and 2,558,857 nondecedents needed palliative care in 2017, approximately 85% of whom were in low- and middle-income countries where palliative care is rarely accessible.
CONCLUSION: Among women with advanced cervical cancer, suffering is highly prevalent and often severe and multifaceted.
METHODS: Data from a 13-country longitudinal SLE cohort were collected prospectively between 2013 and 2020. An inception cohort was defined based on disease duration < 1 year at enrollment. Patient characteristics between inception and noninception cohorts were compared. Survival analyses were performed to examine the association between LLDAS attainment and damage accrual and flare.
RESULTS: Of the total 4106 patients, 680 (16.6%) were recruited within 1 year of SLE diagnosis (inception cohort). Compared to the noninception cohort, inception cohort patients were significantly younger, had higher disease activity, and used more glucocorticoids, but had less organ damage at enrollment. Significantly fewer inception cohort patients were in LLDAS at enrollment than the noninception cohort (29.6% vs 52.3%, P < 0.001), but three-quarters of both groups achieved LLDAS at least once during follow-up. Limiting analysis only to patients not in LLDAS at enrollment, inception cohort patients were 60% more likely to attain LLDAS (hazard ratio 1.37, 95% CI 1.16-1.61, P < 0.001) than noninception cohort patients and attained LLDAS significantly faster. LLDAS attainment was significantly protective against flare in both the inception and noninception cohorts. A total of 88 (13.6%) inception cohort patients accrued organ damage during a median 2.2 years of follow-up.
CONCLUSION: LLDAS attainment is protective from flare in recent onset SLE. Significant protection from damage accrual was not observed because of low rates of damage accrual in the first years after SLE diagnosis. (ClinicalTrials.gov: NCT03138941).
MATERIALS AND METHODS: Patients diagnosed with EPN between 2013 and 2020 were retrospectively included. Data from 15 centers (70%) were used to develop the scoring system, and data from 7 centers (30%) were used to validate it. Univariable and multivariable logistic regression analyses were performed to identify independent factors related to mortality. Receiver operating characteristic curve analysis was performed to construct the scoring system and calculate the risk of mortality. A standardized regression coefficient was used to quantify the discriminating power of each factor to convert the individual coefficients into points. The area under the curve was used to quantify the scoring system performance. An 8-point scoring system for the mortality risk was created (range, 0-7).
RESULTS: In total, 570 patients were included (400 in the test group and 170 in the validation group). Independent predictors of mortality in the multivariable logistic regression were included in the scoring system: quick Sepsis-related Organ Failure Assessment score ≥2 (2 points), anemia, paranephric gas extension, leukocyte count >22,000/μL, thrombocytopenia, and hyperglycemia (1 point each). The mortality rate was <5% for scores ≤3, 83.3% for scores 6, and 100% for scores 7. The area under the curve was 0.90 (95% confidence interval, 0.84-0.95) for test and 0.91 (95% confidence interval, 0.84-0.97) for the validation group.
CONCLUSIONS: Our score predicts the risk of mortality in patients with EPN at presentation and may help clinicians identify patients at a higher risk of death.
METHODS: We used data from a large multicenter, longitudinal SLE cohort in which patients received standard of care. The first visit with active disease (defined as SLE Disease Activity Index 2000 [SLEDAI-2K] score ≥6) was designated as baseline, and mSRI attainment (defined as a reduction in SLEDAI-2K ≥4 points with no worsening in physician global assessment ≥0.3 points) was determined at annual intervals from baseline up to 5 years. Associations between mSRI attainment and outcomes including disease activity, glucocorticoid dose, flare, damage accrual, Lupus Low Disease Activity State (LLDAS), and remission were studied.
RESULTS: We included 2,060 patients, with a median baseline SLEDAI-2K score of 8. An mSRI response was attained by 56% of patients at 1 year, with similar responder rates seen at subsequent annual time points. Compared to nonresponders, mSRI responders had significantly lower disease activity and prednisolone dose and higher proportions of LLDAS and remission attainment at each year, and less damage accrual at years 2 and 3. Furthermore, mSRI responder status at 1 year predicted clinical benefit at subsequent years across most outcomes, including damage accrual (odds ratio [OR] range 0.58-0.69, P
METHODS: Participants were randomized to BNT162b2 (Comirnaty, 30 µg) or messenger RNA (mRNA)-1273 (Spikevax, 100 µg). The primary end point was the rate of two-fold antibody titer increase 14 days after vaccination, targeting the receptor binding domain (RBD) region of wild-type SARS-CoV-2. The secondary end points included changes in neutralizing activity against wild-type and 25 variants. Safety was assessed by monitoring solicited adverse events (AEs) for 7 days.
RESULTS: A total of 269 participants (mean age 81 years, mRNA-1273 n = 135/BNT162b2 n = 134) were included. Two-fold anti-RBD immunoglobulin (Ig) G titer increase was achieved by 101 of 129 (78%) and 116 of 133 (87%) subjects in the BNT162b2 and the mRNA-1273 group, respectively (P = 0.054). A second booster of mRNA-1273 provided higher anti-RBD IgG geometric mean titer: 21.326 IU/mL (95% confidence interval: 18.235-24.940) vs BNT162b2: 15.181 IU/mL (95% confidence interval: 13.172-17.497). A higher neutralizing activity was noted for the mRNA-1273 group. The most frequent AE was pain at the injection site (51% in mRNA-1273 and 48% in BNT162b2). Participants in the mRNA-1273 group had less vaccine-related AEs (30% vs 39%).
CONCLUSIONS: A second booster of either BNT162b2 or mRNA-1273 provided substantial IgG increase. Full-dose mRNA-1273 provided higher IgG levels and neutralizing capacity against SARS-CoV-2, with similar safety profile for subjects of advanced age.
METHODS: Data were analysed from patients in a multinational longitudinal cohort with known anti-dsDNA results from 2013 to 2021. Patients were categorized based on their anti-dsDNA results as persistently negative, fluctuating or persistently positive. Cox regression models were used to examine longitudinal associations of anti-dsDNA results with flare.
RESULTS: Data from 37 582 visits of 3484 patients were analysed. Of the patients 1029 (29.5%) had persistently positive anti-dsDNA and 1195 (34.3%) had fluctuating results. Anti-dsDNA expressed as a ratio to the normal cut-off was associated with the risk of subsequent flare, including in the persistently positive cohort (adjusted hazard ratio [HR] 1.56; 95% CI: 1.30, 1.87; P 3. Both increases and decreases in anti-dsDNA more than 2-fold compared with the previous visit were associated with increased risk of flare in the fluctuating cohort (adjusted HR 1.33; 95% CI: 1.08, 1.65; P = 0.008) and the persistently positive cohort (adjusted HR 1.36; 95% CI: 1.08, 1.71; P = 0.009).
CONCLUSION: Absolute value and change in anti-dsDNA titres predict flares, including in persistently anti-dsDNA positive patients. This indicates that repeat monitoring of dsDNA has value in routine testing.
METHODS: In this prospective, multinational, longitudinal cohort study, we used data from patients with SLE in the Asia Pacific Lupus Collaboration cohort collected between May 1, 2013, and Dec 31, 2020. Eligible patients were adults (aged ≥18 years) who met either the 1997 American College of Rheumatology modified classification criteria for SLE or the 2012 Systemic Lupus International Collaborating Clinics classification criteria. The primary outcome was all-cause mortality, and LLDAS, remission, and variations of remission with lower glucocorticoid thresholds were the primary exposure variables. Survival analyses were used to examine longitudinal associations between these endpoints and risk of mortality. This study is registered with ClinicalTrials.gov, NCT03138941.
FINDINGS: Among a total of 4106 patients in the cohort, 3811 (92·8%) patients were included in the final analysis (median follow-up 2·8 years [IQR 1·0-5·3]; 3509 [92·1%] women and 302 [7·9%] men), of whom 80 died during the observation period (crude mortality rate 6·4 deaths per 1000 person-years). LLDAS was attained at least once in 43 (53·8%) of 80 participants who died and in 3035 (81·3%) of 3731 participants who were alive at the end of the study (p<0·0001); 22 (27·5%) participants who died versus 1966 (52·7%) who were alive at the end of the study attained LLDAS for at least 50% of observed time (p<0·0001). Remission was attained by 32 (40·0%) of 80 who died and in 2403 (64·4%) of 3731 participants who were alive at the end of the study (p<0·0001); 14 (17·5%) participants who died versus 1389 (37·2%) who were alive at the end of the study attained remission for at least 50% of observed time (p<0·0001). LLDAS for at least 50% of observed time (adjusted hazard ratio 0·51 [95% CI 0·31-0·85]; p=0·010) and remission for at least 50% of observed time (0·52 [0·29-0·93]; p=0·027) were associated with reduced risk of mortality. Modifying the remission glucocorticoid threshold (<5·0 mg/day prednisolone) was more protective against mortality than current remission definitions (0·31 [0·12-0·77]; p=0·012), and glucocorticoid-free remission was the most protective (0·13 [0·02-0·96]; p=0·046).
INTERPRETATION: LLDAS significantly reduced the risk of mortality in patients with SLE. Remission did not further reduce the risk of mortality compared with LLDAS, unless lower glucocorticoid thresholds were used.
FUNDING: The Asia-Pacific Lupus Collaboration received funding from Janssen, Bristol Myers Squibb, Eli Lilly, and UCB for this study.
METHODS: This multinational cohort study was conducted at 25 sites across 13 Asia-Pacific countries. We included adult patients aged 18 years or older with stable SLE who were receiving routine clinical care, had two or more visits and had attained stable disease at one or more visits. We categorised stable disease into: LLDAS (Systemic Lupus Erythematosus Disease Activity Index 2000 [SLEDAI-2K] score ≤4, Physician Global Assessment [PGA] ≤1, and prednisolone ≤7·5 mg/day); Definitions of Remission in SLE (DORIS) remission (clinical SLEDAI-2K score 0, PGA <0·5, and prednisolone ≤5 mg/day); or complete remission on therapy (SLEDAI-2K score 0, PGA <0·5, and prednisolone ≤5 mg/day). Stable disease categories were mutually exclusive. Tapering was defined as any decrease in dose of corticosteroids or immunosuppressive therapy (mycophenolate mofetil, calcineurin inhibitors, azathioprine, leflunomide, or methotrexate). Using multivariable generalised estimating equations, we compared flares (SELENA-SLEDAI Flare Index) at the subsequent visit after drug tapering. We used generalised estimating equations and Cox proportional hazard models to compare tapering attempts that had begun in LLDAS, remission, and complete remission.
FINDINGS: Between May 1, 2013, and Dec 31, 2020, 4106 patients were recruited to the cohort, 3002 (73·1%) of whom were included in our analysis. 2769 (92·2%) participants were female, 233 (7·8%) were male, and 2636 (88·1%) of 2993 with ethnicity data available were Asian. The median age was 39·5 years (IQR 29·0-50·0). There were 14 808 patient visits for patients in LLDAS, or remission or complete remission, of which 13 140 (88·7%) entered the final multivariable model after excluding missing data. Among the 9863 visits at which patients continued the same therapy, 1121 (11·4%) flared at the next visit, of which 221 (19·7%) were severe flares. Of the 3277 visits at which a patient received a tapering of therapy, 557 (17·0%) flared at the next visit, of which 120 (21·5%) were severe flares. Tapering was associated with higher odds of flare compared with continuing the same therapy (odds ratio [OR] 1·24 [95% CI 1·10-1·39]; p=0·0005). Of 2095 continuous tapering attempts, 860 (41·1%) were initiated in LLDAS, 596 (28·4%) in remission, and 639 (30·5%) in complete remission. Tapering initiated in LLDAS (OR 1·37 [95% CI 1·03-1·81]; p=0·029) or remission (1·45 [1·08-1·94]; p=0·013) had higher odds of flare in 1 year compared with complete remission. Tapering in LLDAS (hazard ratio 1·24 [95% CI 1·04-1·48]; p=0·016) or remission (1·30 [1·08-1·56]; p=0·0054) had a significantly shorter time to first flare than tapering initiated in complete remission. Attaining sustained LLDAS, remission, or complete remission for at least 6 months just before the time of taper was associated with lower odds of flare at next visit, flares in 1 year, and longer time to flare.
INTERPRETATION: Tapering of corticosteroids or immunosuppressive therapy in patients with stable SLE was associated with excess flares. Our findings suggest that drug tapering should be carefully considered, weighing the risks and benefits, and is best exercised in complete (clinical and serological) remission and after maintaining stable disease for at least 6 months.
FUNDING: AstraZeneca, BMS, Eli Lily, Janssen, Merck Serono, GSK, and UCB.
METHODS: Demographic, clinical and outcomes data, collected prospectively from a multinational cohort between 2013 and 2020, were analysed. Disease activity was assessed using SLEDAI-2K. HDAS was defined as SLEDAI-2K ≥ 10. Patients' first visit with SLEDAI-2K ≥ 10 was assigned as baseline. Survival analyses were performed to examine the associations between cumulative and sustained LLDAS and REM attainment in HDAS patients and subsequent organ damage accrual and flare.
RESULTS: 1,029 HDAS patients with a median study duration of 2.7 years [IQR: 1.0, 4.8] were studied. LLDAS and REM were attained at least once by 71% (LLDAS-ever, n = 726) and 41% (REM-ever, n = 418) of patients. Approximately one-fifth of patients attained ≥50% cumulative time in LLDAS or REM. 37% (n = 385) of patients attained ≥3months of sustained LLDAS, with progressively lower proportions of patients attaining longer periods of sustained LLDAS. Lower proportions of patients attained sustained REM. Attainment of cumulative and sustained LLDAS or REM provided significant protection against damage accrual and flare in HDAS patients. Sustained periods of LLDAS and REM were difficult to achieve and therefore a more stringent target, but provided the most protection against damage accrual or flare.
CONCLUSION: LLDAS and REM were achievable targets in HDAS patients, and provided significant protection against adverse outcomes.
METHODS: Patients aged 18 years or older with SLE were followed up from May 1, 2013, to Dec 31, 2020 in a prospective, multinational, longitudinal cohort study. Patients were recruited from 25 centres in 12 countries. Multi-failure time-to-event analyses were used to assess the effect of sustained LLDAS on irreversible damage accrual (primary outcome; measured with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index) and flare (key secondary outcome; measured with the SELENA Flare Index), with dose exposure and threshold effects studied. Sustained LLDAS or remission were defined as two or more consecutive visits over at least 3 months in the respective state. This study is registered with ClinicalTrials.gov, NCT03138941.
FINDINGS: 3449 patients were followed up for a median of 2·8 years (IQR 1·1-5·6), totalling 37 662 visits. 3180 (92·2%) patients were women, and 3031 (87·9%) were of Asian ethnicity. 2506 (72·7%) patients had sustained LLDAS at least once. Any duration of sustained LLDAS or remission longer than 3 months was associated with reduced damage accrual (LLDAS: hazard ratio 0·60 [95% CI 0·51-0·71], p<0·0001; remission: 0·66 [0·57-0·76], p<0·0001) and flare (LLDAS: 0·56 [0·51-0·63], p<0·0001; remission: 0·66 [0·60-0·73], p<0·0001), and increasing durations of sustained LLDAS corresponded to increased protective associations. Sustained DORIS remission or steroid-free remission were less attainable than LLDAS.
INTERPRETATION: We observed significant protective associations of LLDAS and remission against damage accrual and flare, establish a threshold of 3 months sustained LLDAS or remission as protective, and demonstrate deepening protection with longer durations of sustained LLDAS or remission.
FUNDING: The Asia Pacific Lupus Collaboration receives project support grants from AstraZeneca, Bristol Myers Squibb, EMD Sereno, GSK, Janssen, Eli Lilly, and UCB.