This study demonstrated the utilization of radiation-induced initiator methods for the formation of
nanoparticles of Acrylated Palm Oil (APO) using aqueous Pluronic F-127 (PF-127) microemulsion
system. This microemulsion system was subjected to gamma irradiation to form the crosslinked APO
nanoparticles. Dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopy and
Transmission Electron Microscopy (TEM) were used to characterize the size and the chemical structure
of the nanoparticles. As a result, the size of the APO nanoparticle was decreased when the irradiation
dose increased. The decrease in size might be due to the effects of intermolecular crosslinking and
intramolecular crosslinking reactions of the APO nanoparticles during irradiation process. The size of the
nanoparticle is in the range of 98 to 200 nanometer (nm) after irradiation using gamma irradiator. This radiation-induced method provides a free initiator
induced and easy to control process as compared
to the classical or chemical initiator process. The
study has shown that radiation-induced initiator
methods, namely, polymerization and crosslinking
in the microemulsion, were promising for the
synthesis of nanoparticles.
The main objective of the present study was to investigate the effects of the frying media and storage time on the fatty acid composition (FAC) and iodine value (IV) of deep-fat fried potato chips. The frying experiment was conducted at 180ºC for five consecutive days. Six frying media were considered as the main treatments: refined, bleached, deodorized (RBD) palm olein (A), canola oil (C), RBD palm olein/sesame oil (AB, 1:1 w/w), RBD palm olein/canola oil (AC, 1:1, w/w), sesame oil/canola oil (BC, 1:1, w/w), and RBD palm olein/sesame oil/canola oil (ABC, 1:1:1, w/w/w). The initial degrees of unsaturation of the consumed oils, A, C, AB, AC, BC, and ABC, were 58.6, 94.0, 68.0, 72.2, 87.7, and 75.8 (g/100 g), respectively. The fatty acid analysis showed that there was a decrease in both the linolenic acid (C18:3) and linoleic acid (C18:2) contents, whereas the palmitic acid (C16:0) increased with a prolonged frying time. The chemical analysis showed that there was a significant (p < 0.05) difference in terms of the IV for each frying oil during the five consecutive days of frying (day 0 to 5). Oil C had the least stability in terms of deep-fat frying due to a high level of unsaturated fatty acids. Conversely, oil AC had the best stability due to the smallest reduction of the C18:2/C16:0 ratio and the IV.
Utilization of palm kernel expeller (PKE), a palm oil milling by-product, may be diversified through the exploitation of its protein component. The PKE protein could be effectively extracted using an alkaline
solution and followed by enzymatic hydrolysis to produce PKE protein hydrolysates or crude PKE peptide. The extraction of PKE protein was successfully carried out using an alkaline solution at pH11, at ratio of 1:10 (g/ml), PKE powder to alkaline solution with continuous shaking, 150 rpm, in a water bath operating at 50°C for 30 min. The extracted protein powder (PKEP) had 68.50±3.08% crude protein, 0.54±0.03% fat and 0.73±0.02% ash. The freeze-dried PKEP was re-suspend in particular buffer and hydrolyzed with proteolytic enzymes (Alcalase® 2.4L, Flavourzyme® 500MG, pepsin or trypsin) to obtain PKEP hydrolysate (PKEPH). The effect of enzyme concentration (0, 2, 4, 6, 8 & 10%) and time of hydrolysis (0, 6, 12, 24, 48 h) was studied to determine the most efficient hydrolytic conditions. Results showed that all enzymes tested were capable of hydrolyzing the PKEP and producing hydrolysates with different degree of hydrolysis (DH%). At 8.0% concentration, Alcalase®2.4L hydrolyzed PKEP into the highest DH (75.96%) hydrolysate (PKEPH) after 1h hydrolysis. Although only with 2.0% Alcalase 2.4 L concentration, it was sufficient to produce PKEP hydrolysate of 81.35% DH %, but it required 12 h to hydrolyze the protein. Pepsin was relatively the least efficient protease to hydrolyze the PKEP.
Chicken fat is a potential bioresource that can be developed into a commercial product. In this study, chicken fat, which is rich in unsaturated fatty acids, including oleic acid (C18:1) and linoleic acid (C18:2), was enzymatically interesterified with corn oil to produce a soft spread. Two interesterified products, sample 16 (4% enzyme, 4:1 mole ratio of chicken fat to corn oil, 50°C and 42 h of the interesterification process) and sample 17 (4% enzyme, 2:1 mole ratio of chicken fat to corn oil, 30°C and 42 h of the interesterification process), were selected based on the highest SFC at 30oC which were close to SFC values of commercial product. A morphological study showed that the final products had smaller and less dense fat particles, which explained the lower melting temperatures and solid fat content (3.2 and 3.5% for samples 16 and 17, respectively, at 20°C) compared to the commercial products (9.7, 6.8 and 7.7% for products A, B and C, respectively, at 20°C). However, both sample 16 and 17 had similar thermal properties to a vegetable-oil-based commercial product, with melting enthalpies (ΔH) of 58.45 J/g and 71.40 J/g, and were fully melted at 31.40°C and 35.41°C, respectively.
The fatty acid composition and trans fatty acids (TFA) contents of samples of five Malaysian cream crackers biscuit brands were determined by gas-liquid chromatography, using a 60 m Supelco SP2340 fused silica capillary column and flame ionization detection. The identities of the fatty acids were established by comparing their retention times with authentic standards from Supelco. The results were expressed as relative percentages. The total saturated fatty acids (SFA) in the samples ranged from 48.90% to 54.87% of total fatty acids. As for the polyunsaturated fatty acids (PUFA), the total PUFA in the samples ranged from 9.97% to 11.73% of total fatty acids. Total trans fatty acids (TFA) ranged from 0.17% to 0.77% of total fatty acids. The monotrans 18:2 tc or 18:2 ct isomer content ranged from 0.07% to 0.10% of total fatty acids and the ditrans 18:2 isomer (9t, 12t) was not detected. The results indicate that all the fat sources of the 5 sample crackers biscuit brands were palm oil based.
This work aims at optimizing the media constituents for citric acid production from oil palm empty fruit bunches (EFB) as renewable resource using artificial neural networks (ANN) approach. The bioconversion process was done through solid state bioconversion using Aspergillus niger. ANN model was built using MATLAB software. A dataset consists of 20 runs from our previous work was used to develop ANN. The predictive and generalization ability of ANN and the results of RSM were compared. The determination coefficients (R2-value) for ANN and RSM models were 0.997 and 0.985, respectively, indicating the superiority of ANN in capturing the non-linear behavior of the system. Validation process was done and the maximum citric acid production (147.74 g/kg-EFB) was achieved using the optimal solution from ANN which consists of 6.1% sucrose, 9.2% mineral solution and 15.0% inoculum.
Hypoglycaemic and antihyperglycemic activity of oil palm Elaeis guineensis fruit extract on normal and Streptozotocininduced
diabetic rats was studied. The oil palm fruit extract (OPF) were administered orally at different concentrations (100,
200 and 500 mg kg-1 b.w.) in fasting and post-prandial rats. Hypoglycaemia was not observed in the group of normal rats
treated with OPF. In fasting rats, OPF (500 mg kg-1 b.w.) has caused the blood glucose level (BGL) to reduce significantly.
For post-prandial diabetic rats, the antihyperglycemic activity was observed after OPF treatment at concentrations 200
and 500 mg kg-1. Chronic OPF treatments (for 28 days) had increased the diabetic rat’s body weight and reduced BGL as
well as improved plasma insulin secretion. The result of this study suggests E. guineensis palm fruit extract show evidence
of antihyperglycemic properties from the reduction of the BGL in diabetic rats.
Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.
Oil palm is widely grown in Malaysia. There has been interest in the utilization of oil palm biomass for production of environmental friendly biofuels. The gasification of empty fruit bunches (EFB), a waste of the palm oil industry, was investigated in this study to effectively and economically convert low value and highly distribution solid biomass to a uniform gaseous mixture mainly hydrogen (H2). The effects of temperature, equivalence ratio (ER) and catalyst adding on the yields and distribution of hydrogen rich gas products were also investigated. The main gas species generated, as identified by GC, were H2, CO, CO2, CH4 and trace amounts of C2H4 and C2H6. With temperature increasing from 700 to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (~ 90 wt. % ) at 1000°C with a big portion of H2 (38.02 vol. %) and CO (36.36 vol. %). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.42 vol. %) at 850°C. The effect of adding catalysts (Malaysian dolomite1, P1), Malaysian dolomite2 (GML), NaOH, NaCl, CaO, ZnO, NiO) as a primary catalyst on gas product yield was investigated, and it was found that adding dolomite showed the greatest effect with the maximum H2 yield achieved (28.18 vol.%) at 850°C.
This study was aimed at improving the quality of fish oil. A synthetic filter aid (Magnesol XL) was used at various concentration (1, 3 and 5%) and time levels (5, 10, 15 and 20 minutes) to adsorb the polar compound products of the oil. Some physical and chemical properties (viscosity, colour, density, acid value, peroxide value and free fatty acid) of the treated oil were determined. Results indicate that Magnesol XL at 1 and 3% levels significantly reduced the acid value, peroxide value and free fatty acid contents of the treated oil.
Treatment of the fish oil with Magnesol XL at 1 and 3% levels was also better than treatment with 5% Magnesol XL on improving the fish oil quality. The fatty acid profile for Σ n3 at untreated and treatment adsorbent showed significant at 0.05 level but not significant at Magnesol XL adsorbent concentration 1-5%.
A study to measure frying quality and stability of rice bran oil (RBO) compared to palm olein (PO) was conducted. The oils were used to fry French fries continuously for six hours a day up to five days at a temperature of 185 ± 5°C. Oil samples were collected and analyzed for free fatty acid (FFA), peroxide value (PV), smoke point, p-anisidine value (p-AV), iodine value (IV) and colour. At the end of the frying period for both oil samples, FFA, PV, colour and p-AV were increased whereas the IV and smoke point decreased. The rate of FFA formation of RBO was slightly lower which increased from 0.142% to 0.66% compared to PO which was from 0.079% to 0.93%. The PV of RBO showed consistent increased from 3.9 meq/kg to 13.4 meq/kg whereas PO with initial value at 3.4 meq/kg increased to 34.6 meq/kg on the fifth day. Smoke point of RBO and PO progressively dropped from 235°C to 188°C and 220°C to 178°C, respectively. The level of p-AV for RBO increased from 12.19 to 32.65 from the initial to the end of frying day whereas PO had higher rate of changes in p-AV which was from 10.45 to 60.75. The IV decreased over frying time where IV of RBO decreased from 94.5 to 66.5 while IV of PO decreased from 50.9 to 44.6. The colour of RBO showed increased in redness and yellowness but PO was darker at the end of the frying trial. In general, RBO showed better stability than the PO in deep frying of French fries.
Assessing performance and genetic diversity of the wild material of oil palm is important for
under- standing genetic structure of natural oil palm populations towards improvement of the
crops. This in-formation is important for oil palm breeding programs, and also for continued exsitu
conservation of the germplasm and breeding program in Malaysia. Mutation induction is one
of the approaches in creating variants for selection in the breeding program. In this study, the
effect of irradiated pollen towards pollen viability, bunches formation and number of
parthenocarpic fruits were evaluated. Elaies guineensis Jacq. pollens were exposed to series of
acute gamma radiation at dose 0, 10, 20, 40, 50, 100, 200, 300, 500, 100 and 2000 Gy . Pollen
viability and pollen tube formation were disrupted in which unable the pollen to reach the ovule.
At this stage, embryo was aborted towards formation of parthenocarpic fruits and rotten bunches.
The study suggested that at low levels of irradiation i.e. < 200 Gy, generative nucleus partially
damage and it is still maintaining capacity of fertilizing the egg cells for hybridization. It is
important for breeders in understanding this finding towards novel variants of oil palm via
mutation induction
Canarium ovatum oil Engl. (pili nut oil) was extracted by using cold press method and then the
physico-chemical properties of the oil samples, roasted pili nut oil (RPNO) and unroasted pili
nut oil (UPNO) such as iodine value (IV), peroxide value (PV), acid value (% FFA), solid fat
content (SFC), fatty acid composition and triacylglycerol (TAG) composition were determined.
The percentage of oil yield and iodine value for RPNO and UPNO were showed no significant
different, wheareas there were significantly different for the peroxide value and percentage of
free fatty acid. The solid fat content for RPNO and UPNO were similar to the palm olein oil
and both completely melt at 25°C. Both samples, RPNO and UPNO were contained 50.70%
and 52.59% of oleic acid and were found not contain the trisaturated TAGs.
HyperDSC™(fast scan rate) was used to study the melting behavior of canola (CLO), sunflower (SFO), palm olein (PO), rice bran oils (RBO), and cocoa butter (CB), and was compared to the melting behaviors using conventional DSC. There was an increase in sensitivity with increase in scan rate. Slow scan rate (5 to 20C/min) gave low sensitivity, which increased when the scan rates were increased to 50, 100 and 200C/min. Peak resolution was affected by scan rate depending on the sample weight. Increase in the size of sample coupled with the use of fast scan rate decreased the peak resolution. Generally small sample sizes gave better peak resolution. Results of the effect of scan rate on glass transition (Tg) shows that Tg, which is a weak transition especially in crystalline and low amorphous materials was not detected using conventional scan rates (5 to 20oC/min). It was however detected using of hyperDSC™ scan rates (100 to 200oC/min). Increasing the scan rate resulted in an increase in the peak temperature and the elimination of shoulder peaks, which were caused due to the polymorphic behavior of the triacylglycerols in the oils. The increase in peak temperature caused a shift in the peak position towards a higher temperature value. There is a positive correlation between the peak temperature and scan rate. The correlation coefficients (r) for CLO, SFO, PO, RBO and CB were 0.96, 0.95, 0.97, 0.96 and 0.96 respectively.
Synthesis of palm oil based-urethane acrylate (POBUA) resins was carried out by acrylation of epoxidizedpalm oil (EPOP) using acrylic acid in the presence of a catalyst and followed by isocyanation to obtainthe POBUA. Using the monomer as a diluent in the formulation, 4% of photoinitiator and incorporationof organoclay (1-5% wt), nanocomposites were obtained upon UV irradiation. The X-ray DiffractoryXRD study revealed that the nanocomposites obtained were of the exfoliation type. The presence ofthe clay improved the hardness and did not affect the thermal stability. Similarly, it increased the glasstransition temperature Tg but reduced the modulus as the clay content was increased. The improvementof the tensile strength was only obtained when the clay concentration was 5 phr.
The agricultural industry scenario in many industrialized countries has adopted an image processing system as a solution to automate the grading process in order to provide accurate, reliable, consistent and quantitative information in addition to the large volumes, which human graders are not able to perform. In Malaysia, the grading of palm oil Fresh Fruit Bunches (FFB) is still performed manually through visual inspection using the surface color as the main quality attribute. It is the intention here to introduce an automated grading system for palm oil FFB using a computer assisted photogrammetric methodology which correlate the surface color of fruit bunches, not the fruitlets, to their ripeness and eventually sorts the fruit to two predefined fruit categories. The methodology consists of five main phases, i.e. image acquisition, image pre-processing, image segmentation, calculation of color Digital Numbers (DN) (data manipulation) and finally the classification of ripeness. This computerized photogrammetric image processing technique using MATLAB® package which is integrated to a sorting system differs in various aspects from other digital imaging technique or machine vision system adopted for classifying fruit ripeness. A comprehensive discussion will be presented based on the results achieved through actual fruit testing on the prototype grading system. The main concern was to ensure the reliability of the computerized photogrammetric technique achievable and the system’s mechanism working as intended. The fruit classification ability of the system yields above 90% accuracy and taking not more than 25 seconds to classify and sort each fruit.
Two functional food oils, namely extra virgin olive oil (EVOO) and virgin coconut oil (VCO) have been analyzed simultaneously using Fourier transform infrared (FTIR) spectroscopy. The performance of multivariate calibration of principle component regression (PCR) and partial least square regression (PLSR) was evaluated in order to give the best prediction model for such determination. FTIR spectra were treated with several treatments including mean centering (MC), derivatization, and standard normal variate (SNV) at the combined frequency regions of 3050 – 3000, 1660 – 1650, and 1200 – 900 cm-1. Based on its capability to give the highest values of coefficient of correlation (R) for the relationship between actual value of EVOO/VCO and FTIR predicted value together with the lowest values of root mean square error of calibration (RMSEC), PLSR with mean centered-first derivative spectra was chosen for simultaneous determination of EVOO and VCO. It can be concluded that FTIR spectroscopy combined with multivariate calibration of PLSR was successfully applied to simultaneously quantify EVOO and VCO with acceptable parameters.
The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acr ylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiat ion technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Tra nsmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by c oncentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier.
This paper outlines the application of chemometrics and pattern recognition tools to classify palm oil using Fourier Transform Mid Infrared spectroscopy (FT-MIR). FT-MIR spectroscopy is used as an effective analytical tool in order to categorise the oil into the category of unused palm oil and used palm oil for frying. The samples used in this study consist of 28 types of pure palm oil, and 28 types of frying palm oils. FT-MIR spectral was obtained in absorbance mode at the spectral range from 650 cm -1 to 4000 cm -1 using FT-MIR-ATR sample handling. The aim of this work is to develop fast method in discriminating the palm oils by implementing Partial Least Square Discriminant Analysis (PLS-DA), Learning Vector Quantisation (LVQ) and Support Vector Machine (SVM). Raw FT-MIR spectra were subjected to Savitzky-Golay smoothing and standardized before developing the classification models. The classification model was validated through finding the value of percentage correctly classified by test set for every model in order to show which classifier provided the best classification. In order to improve the performance of the classification model, variable selection method known as t-statistic method was applied. The significant variable in developing classification model was selected through this method. The result revealed that PLSDA classifier of the standardized data with application of t-statistic showed the best performance with highest percentage correctly classified among the classifiers.
Basal stem rot (BSR) caused by species Ganoderma, is one of the most serious disease of oil palm in Malaysia. As far as the disease problem to oil palm in Malaysia is concerned, BSR is the only disease requiring urgent solution. The BSR is not new to Malaysia, it has been known to attack oil palm since the early years when the crop was introduced into this country. There is an indication that there are differences in susceptibility to basal stem rot between germplasm materials from different genetic origin [2]. This provides hope in generating oil palm varieties with reduced level of susceptibility using existing genetic materials. There is also interest in developing diagnostic tools such as using PCR primers for detection of the pathogen in oil palms [1]. Altered expression of several classes of genes was observed in plants in response to fungal infection. These include genes associated with cell maintenance and development, genes involved in biosynthesis of lignin and phenolics and genes implicated in oxidative burst, programmed cell death or hypersensitive response [5].