METHODS: We systemically searched PubMed, CENTRAL and Scopus up to June 2018. We searched for published interventional studies on biomarkers of glucose metabolism (defined as fasting glucose, fasting insulin, HOMA, 2-hour post prandial glucose and HbA1C) that compared palm oil- or palm olein-rich diets with other edible vegetable oils (such as olive oil, canola oil and soybean oil). Two reviewers independently extracted data and assessed study risks of bias. Mean differences of outcomes were pooled for the meta-analysis.
RESULTS: We identified 1921 potentially eligible articles with only eight included studies. Seven randomised cross-over trials and one parallel trial were included. Study population were among young to middle-aged, healthy, non-diabetic, and normal weight participants. Intervention duration ranged from three to seven weeks, and fat substitution ranged from 15% to 20% energy. There were insignificant differences in fasting glucose when compared to partially hydrogenated soybean oil [-0.15mmol/L (-0.46,0.16) P = 0.33, I2 = 48%], soybean oil [0.05mmol/L (-0.09,0.18) P = 0.49, I2 = 0%] and olive oil [0.04mmol/L (-0.09,0.17) P = 0.76, I2 = 0%]. Insignificant effects were also seen on fasting insulin when compared to partially hydrogenated soybean oil [1.72pmol/L (-11.39,14.84) P = 0.80, I2 = 12%] and olive oil diet [-0.14pmol/L (-4.87,4.59) P = 0.95, I2 = 0%].
CONCLUSION: Current evidence on the effects of palm oil consumption on biomarkers of glucose metabolism is poor and limited to only healthy participants. We conclude that little or no additional benefit will be obtained by replacing palm oil with other oils rich in mono or polyunsaturated fatty acids for changes in glucose metabolism.
Method: A total of 24 elastomeric devices were prepared, and six elastomeric devices containing 6mg/mL of ceftaroline (three in each type of diluents) were stored at one of the following conditions: 4°C for 6 days, 25°C for 24hours, 30°C for 24hours or 35°C for 24hours. An aliquot was withdrawn before storage and at different time points. Chemical stability was measured using a stability indicating high-performance liquid chromatography, and physical stability was assessed as change in pH, colour and particle content.
Results: Ceftaroline, when admixed with both diluents, was stable for 144, 24 and 12hours at 4°C, 25°C and 30°C, respectively. At 35°C, ceftaroline admixed with normal saline (NS) and glucose 5% was stable for 12hours and for 6hours, respectively. No evidence of particle formation, colour change or pH change was observed throughout the study period.
Conclusions: Our findings support 12 or 24hours continuous elastomeric infusion of ceftaroline-NS admixture, and bulk preparation of elastomeric pumps containing ceftaroline solution in advance. This would facilitate early hospital discharge of patients eligible for the elastomeric-based home therapy and avoid the need for patient's caregivers travelling to the hospital on a daily basis.
Methods: Four ampoules of intravenous co-trimoxazole were injected into an infusion bag containing either 480 (1:25 v/v), 380 (1:20 v/v), 280 (1:15 v/v) or 180 (1:10 v/v) mL of glucose 5% solution. Three bags for each dilution (total 12 bags) were prepared and stored at room temperature. An aliquot was withdrawn immediately (at 0 hour) and after 0.5, 1, 2 and 4 hours of storage for high-performance liquid-chromatography (HPLC) analysis, and additional samples were withdrawn every half an hour for microscopic examination. Each sample was analysed for the concentration of trimethoprim and sulfamethoxazole using a stability indicating HPLC method. Samples were assessed for pH, change in colour (visually) and for particle content (microscopically) immediately after preparation and on each time of analysis.
Results: Intravenous co-trimoxazole at 1:25, 1:20, 1:15 and 1:10 v/v retained more than 98% of the initial concentration of trimethoprim and sulfamethoxazole for 4 hours. There was no major change in pH at time zero and at various time points. Microscopically, no particles were detected for at least 4 hours and 2 hours when intravenous co-trimoxazole was diluted at 1:25 or 1:20 and 1:15 v/v, respectively. More than 1200 particles/mL were detected after 2.5 hours of storage when intravenous co-trimoxazole was diluted at 1:15 v/v.
Conclusions: Intravenous co-trimoxazole is stable over a period of 4 hours when diluted with 380 mL of glucose 5% solution (1:20 v/v) and for 2 hours when diluted with 280 mL glucose 5% solution (1:15 v/v).