Displaying publications 5341 - 5360 of 8215 in total

Abstract:
Sort:
  1. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Viral Matrix Proteins/genetics; Influenza A Virus, H1N1 Subtype/genetics
  2. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
    Matched MeSH terms: Tuberous Sclerosis/genetics*; Tumor Suppressor Proteins/genetics*
  3. Tan SSN, Koh KT, Tiong LL, Ong TK, Fong AYY
    Pharmacogenomics, 2018 10;19(15):1151-1157.
    PMID: 30191759 DOI: 10.2217/pgs-2018-0082
    AIM: Recurrent thrombotic events still occur despite dual antiplatelet therapy in patient's post percutaneous coronary intervention (PCI) could be attributed to high on-treatment platelet reactivity.

    METHODS: A 44-year-old male, who had staged PCI to left anterior descending (LAD) 2 weeks after an anterior MI, with a drug-coated stent was readmitted with new anterior STEMI 35 days later. Coronary angiogram revealed mid-stent thrombus in situ. He had further uncomplicated PCI. Platelet function testing and genotyping showed clopidogrel high on-treatment platelet reactivity and CYP2C19*3/*17 genotype. Ticagrelor was commenced.

    RESULTS & CONCLUSION: This case study is the first reported in Malaysia to document a patient with a CYP2C19*3/*17 genotype presenting with a stent thrombosis after an uncomplicated index PCI procedure.

    Matched MeSH terms: Thrombosis/genetics*; Cytochrome P-450 CYP2C19/genetics*
  4. Marin-Mogollon C, van de Vegte-Bolmer M, van Gemert GJ, van Pul FJA, Ramesar J, Othman AS, et al.
    Sci Rep, 2018 10 08;8(1):14902.
    PMID: 30297725 DOI: 10.1038/s41598-018-33236-x
    Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P. falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P. falciparum mutants (PfΔp230p) lacking P230p expression. The PfΔp230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro. In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P. falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
    Matched MeSH terms: Mutation/genetics; Parasites/genetics
  5. Puah SM, Tan JAMA, Chew CH, Chua KH
    J Food Sci, 2018 Sep;83(9):2337-2342.
    PMID: 30101982 DOI: 10.1111/1750-3841.14300
    Staphylococcus aureus is able to form multilayer biofilms embedded within a glycocalyx or slime layer. Biofilm formation poses food contamination risks and can subsequently increase the risk of food poisoning. Identification of food-related S. aureus strains will provide additional data on staphylococcal food poisoning involved in biofilm formation. A total of 52 S. aureus strains isolated from sushi and sashimi was investigated to study their ability for biofilm formation using crystal violet staining. The presence of accessory gene regulator (agr) groups and 15 adhesion genes was screened and their associations in biofilm formation were studied. All 52 S. aureus strains showed biofilm production on the tested hydrophobic surface with 44% (23/52) strains classified as strong, 33% (17/52) as moderate, and 23% (12/52) as weak biofilm producers. The frequency of agr-positive strains was 71% (agr group 1 = 21 strains; agr group 2 = 2 strains; agr group 3 = 12 strains; agr group 4 = 2 strains) whereas agr-negative strains were 29% (15/52). Twelve adhesion genes were detected and 98% of the S. aureus strains carried at least one adhesion gene. The ebps was significantly (p < .05) associated with strong biofilm producing strains. In addition, eno, clfA, icaAD, sasG, fnbB, cna, and sasC were significantly higher in the agr-positive group compared to the agr-negative group. The results of this study suggest that the presence of ebps, eno, clfA, icaAD, sasG, fnbB, cna, and sasC may play an important role in enhancing the stage of biofilm-related infections and warrants further investigation.

    PRACTICAL APPLICATION: This work contributes to the knowledge on the biofilm formation and the distribution of agr groups in S. aureus strains as well as microbial surface components in recognizing adherence matrix molecules of organisms isolated from ready-to-eat sushi and sashimi. The findings provide valuable information to further study the roles of specific genes in causing biofilm-related infections.

    Matched MeSH terms: Bacterial Proteins/genetics*; Staphylococcus aureus/genetics*
  6. Zaini ZM, McParland H, Møller H, Husband K, Odell EW
    Sci Rep, 2018 10 26;8(1):15874.
    PMID: 30367100 DOI: 10.1038/s41598-018-34165-5
    The value of image cytometry DNA ploidy analysis and dysplasia grading to predict malignant transformation has been determined in oral lesions considered to be at 'high' risk on the basis of clinical information and biopsy result. 10-year follow up data for 259 sequential patients with oral lesions clinically at 'high' risk of malignant transformation were matched to cancer registry and local pathology database records of malignant outcomes, ploidy result and histological dysplasia grade. In multivariate analysis (n = 228 patients), 24 developed carcinoma and of these, 14 prior biopsy samples were aneuploid. Aneuploidy was a significant predictor (hazard ratio 7.92; 95% CI 3.45, 18.17) compared with diploidy (p 
    Matched MeSH terms: DNA, Neoplasm/genetics; Mouth Neoplasms/genetics
  7. Braae UC, Hung NM, Satrija F, Khieu V, Zhou XN, Willingham AL
    Parasit Vectors, 2018 Nov 29;11(1):613.
    PMID: 30497522 DOI: 10.1186/s13071-018-3203-z
    BACKGROUND: Due to the relative short life span and the limited spatial movement, porcine cysticercosis is an excellent indicator of current local active transmission. The aim of this study was to map at province-level, the occurrence of T. solium and T. asiatica in pigs and areas at risk of transmission to pigs in East and Southeast Asia, based on the density of extensive pig production systems and confirmed reports of porcine cysticercosis.

    METHODS: This study covered East and Southeast Asia, which consist of the following countries: Brunei, Cambodia, China, East Timor, Indonesia, Japan, Laos, Malaysia, Mongolia, Myanmar, North Korea, Philippines, Singapore, South Korea, Thailand and Vietnam. Literature searches were carried out to identify current epidemiological data on the occurrence of porcine cysticercosis caused by T. solium and T. asiatica infections. Modelled densities of pigs in extensive production systems were mapped and compared to available data on porcine cysticercosis.

    RESULTS: Porcine cysticercosis was confirmed to be present during the period 2000 to 2018 in eight out of the 16 countries included in this study. Taenia solium porcine cysticercosis was confirmed from all eight countries, whereas only one country (Laos) could confirm the presence of T. asiatica porcine cysticercosis. Province-level occurrence was identified in five countries (Cambodia, Indonesia, Laos, Myanmar, and Vietnam) across 19 provinces. Smallholder pig keeping is believed to be widely distributed throughout the region, with greater densities predicted to occur in areas of China, Myanmar, Philippines and Vietnam.

    CONCLUSIONS: The discrepancies between countries reporting taeniosis and the occurrence of porcine cysticercosis, both for T. solium and T. asiatica, suggests that both parasites are underreported. More epidemiological surveys are needed to determine the societal burden of both parasites. This study highlights a straightforward approach to determine areas at risk of porcine cysticercosis in the absence of prevalence data.

    Matched MeSH terms: Taenia/genetics; Taenia solium/genetics
  8. Tan SN, Sim SP, Khoo ASB
    BMC Mol. Biol., 2018 12 04;19(1):15.
    PMID: 30514321 DOI: 10.1186/s12867-018-0116-5
    BACKGROUND: Oxidative stress is known to be involved in most of the aetiological factors of nasopharyngeal carcinoma (NPC). Cells that are under oxidative stress may undergo apoptosis. We have previously demonstrated that oxidative stress-induced apoptosis could be a potential mechanism mediating chromosome breakages in nasopharyngeal epithelial cells. Additionally, caspase-activated DNase (CAD) may be the vital player in mediating the chromosomal breakages during oxidative stress-induced apoptosis. Chromosomal breakage occurs during apoptosis and chromosome rearrangement. Chromosomal breakages tend to cluster in certain regions, such as matrix association region/scaffold attachment region (MAR/SAR). We hypothesised that oxidative stress-induced apoptosis may result in chromosome breaks preferentially at the MAR/SAR sites. The AF9 gene at 9p22 was targeted in this study because 9p22 is a deletion site commonly found in NPC.

    RESULTS: By using MAR/SAR recognition signature (MRS), potential MAR/SAR sites were predicted in the AF9 gene. The predicted MAR/SAR sites precisely match to the experimentally determined MAR/SARs. Hydrogen peroxide (H2O2) was used to induce apoptosis in normal nasopharyngeal epithelial cells (NP69) and NPC cells (HK1). Nested inverse polymerase chain reaction was employed to identify the AF9 gene cleavages. In the SAR region, the gene cleavage frequency of H2O2-treated cells was significantly higher than that of the non-treated cells. A few chromosomal breakages were detected within the AF9 region which was previously found to be involved in the mixed lineage leukaemia (MLL)-AF9 translocation in an acute lymphoblastic leukaemia patient. As for the non-SAR region, no significant difference in the gene cleavage frequency was found between the untreated control and H2O2-treated cells. Furthermore, H2O2-induced cleavages within the SAR region were reduced by caspase-3 inhibitor, which indirectly inhibits CAD.

    CONCLUSIONS: These results reaffirm our previous findings that oxidative stress-induced apoptosis could be one of the potential mechanisms underlying chromosome breakages in nasopharyngeal epithelial cells. MAR/SAR may play a vital role in defining the location of chromosomal breakages mediated by oxidative stress-induced apoptosis, where CAD is the major nuclease.

    Matched MeSH terms: Apoptosis/genetics; Matrix Attachment Regions/genetics*
  9. Noorizhab Fakhruzzaman MN, Abidin NZ, Aziz ZA, Lim WF, Richard JJ, Noorliza MN, et al.
    Int J Mycobacteriol, 2019 12 4;8(4):320-328.
    PMID: 31793500 DOI: 10.4103/ijmy.ijmy_144_19
    Background: Tuberculosis (TB) is still a major health problem in Malaysia with thousands of cases reported yearly. This is further burdened with the emergence of multidrug-resistant TB (MDR-TB). Whole-genome sequencing (WGS) provides high-resolution molecular epidemiological data for the accurate determination of Mycobacterium tuberculosis complex (MTBC) lineages and prediction of the drug-resistance patterns. This study aimed to investigate the diversity of MTBC in Malaysia in terms of lineage and drug-resistance patterns of the clinical MTBC isolates using WGS approach.

    Methods: The genomes of 24 MTBC isolated from sputum and pus samples were sequenced. The phenotypic drug susceptibility testing (DST) of the isolates was determined for ten anti-TB drugs. Bioinformatic analysis comprising genome assembly and annotation and single-nucleotide polymorphism (SNP) analysis in genes associated with resistance to the ten anti-TB drugs were done on each sequenced genome.

    Results: The draft assemblies covered an average of 97% of the expected genome size. Eleven isolates were aligned to the Indo-Oceanic lineage, eight were East-Asian lineage, three were East African-Indian lineage, and one was of Euro-American and Bovis lineages, respectively. Twelve of the 24 MTBC isolates were phenotypically MDR M. tuberculosis: one is polyresistance and another one is monoresistance. Twenty-six SNPs across nine genes associated with resistance toward ten anti-TB drugs were detected where some of the mutations were found in isolates that were previously reported as pan-susceptible using DST. A haplotype consisting of 65 variants was also found among the MTBC isolates with drug-resistance traits.

    Conclusions: This study is the first effort done in Malaysia to utilize 24 genomes of the local clinical MTBC isolates. The high-resolution molecular epidemiological data obtained provide valuable insights into the mechanistic and epidemiological qualities of TB within the vicinity of Southeast Asia.

    Matched MeSH terms: Mycobacterium tuberculosis/genetics*; Drug Resistance, Multiple, Bacterial/genetics*
  10. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, et al.
    Nutrients, 2019 Oct 19;11(10).
    PMID: 31635074 DOI: 10.3390/nu11102525
    This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer's disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
    Matched MeSH terms: Phosphatidylinositol 3-Kinases/genetics; Proto-Oncogene Proteins c-akt/genetics
  11. Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y
    J Gen Virol, 2016 Dec;97(12):3413-3426.
    PMID: 27902330 DOI: 10.1099/jgv.0.000641
    Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
    Matched MeSH terms: HIV/genetics; Simian Immunodeficiency Virus/genetics
  12. Tan LL, Ahmed SA, Ng SK, Citartan M, Raabe CA, Rozhdestvensky TS, et al.
    Food Chem, 2020 Mar 30;309:125654.
    PMID: 31678669 DOI: 10.1016/j.foodchem.2019.125654
    A specialized DNA extraction method and a SYBR Green quantitative polymerase chain reaction (SyG-qPCR) assay were combined to generate a ready-to-use kit for rapid detection of porcine admixtures in processed meat products. Our qPCR assay utilized repetitive LINE-1 elements specific to the genome of Sus scrofa domesticus (pig) as a target and incorporated internal controls. We improved the genomic DNA extraction method, and reduced extraction times to the minimum. The method was validated for specificity, sensitivity (0.001% w/w) and robustness, and values were compared with those of a commercially available kit. We also tested our method using 121 processed food products and consistently detected amplification only in samples containing pork. Due to its efficiency and cost-effectiveness, our method represents a valuable new method for detecting food adulteration with pork that is superior to existing quality control approaches.
    Matched MeSH terms: Long Interspersed Nucleotide Elements/genetics; Sus scrofa/genetics
  13. Bala JA, Balakrishnan KN, Jesse FFA, Abdullah AA, Noorzahari MSB, Ghazali MT, et al.
    Infect Genet Evol, 2020 01;77:104076.
    PMID: 31678648 DOI: 10.1016/j.meegid.2019.104076
    There is a little information on the characterization of Orf virus strains that are endemic in Malaysia. The relationship between the severity of disease and the molecular genetic profile of Orf virus strains has not been fully elucidated. This study documented the first confirmed report of contagious ecthyma causing by Orf virus in goats from a selected state of eastern peninsular Malaysia. The disease causes significant debilitation due to the inability of affected animals to suckle which brings a great economic loss to the farmers. A total of 504 animals were examined individually to recognize the affected animals with Orf lesion. Skin scrapping was used to collect the scab material from the infected animals. The presence of Orf virus was confirmed by combination of methods including virus isolation on vero cells, identification by Transmission Electron Microscopy (TEM) and molecular technique using PCR and Sanger sequencing. The results showed the successful isolation of four Orf virus strains with a typical cytopathic effects on the cultured vero cells line. The morphology was confirmed to be Orf virus with a distinctive ovoid and criss cross structure. The phylogenetic analysis revealed that these isolated strains were closely related to each other and to other previously isolated Malaysian orf viruses. In addition these Orf virus strains were closely related to Orf viruses from China and India. This study provides more valuable insight in terms of genotype of Orf virus circulating in Malaysia.
    Matched MeSH terms: Orf virus/genetics; Viral Proteins/genetics*
  14. Lv Q, Wang Y, Su C, Lakshmipriya T, Gopinath SCB, Pandian K, et al.
    Int J Biol Macromol, 2019 Aug 01;134:354-360.
    PMID: 31078598 DOI: 10.1016/j.ijbiomac.2019.05.044
    Human papillomavirus (HPV) is a double-standard DNA virus, as well as the source of infection to the mucous membrane. It is a sexually transmitted disease that brings the changes in the cervix cells. Oncogenes, E6 and E7 play a pivotal role in the HPV infection. Identifying these genes to detect HPV strains, especially a prevalent HPV16 strain, will bring a great impact. Among different sensing strategies for pathogens, the dielectric electrochemical biosensor shows the potential due to its higher sensitivity. In this research, HPV16-E7 DNA sequence was detected on the carbodiimidazole-modified interdigitated electrode (IDE) surface with the detection limit of 1 fM. To enhance the sensitivity, the target sequence was conjugated on gold nanoparticle (GNP) and attained detection to the level of 10 aM. This produced ~100 folds improvement in detecting HPV16-E7 gene and 4 folds increment in the current flow. The stability of HPV16-E7 DNA sequences on GNP was verified by the salt-induced GNP aggregation. The current system has shown the higher specificity by comparing against non-complementary and triple-mismatched DNA sequences of HPV16-E7. This demonstration in detecting HPV16-E7 using dielectric IDE sensing system with a higher sensitivity can be recommended for detecting a wide range of disease-causing DNA-markers.
    Matched MeSH terms: DNA, Viral/genetics; Papillomavirus E7 Proteins/genetics*
  15. Mokhtar MH, Giribabu N, Salleh N
    In Vivo, 2019 12 29;34(1):225-231.
    PMID: 31882482 DOI: 10.21873/invivo.11764
    BACKGROUND/AIM: It was hypothesized that endometrial tight junction morphology and expression of tight junction proteins i.e., claudin-4 and occludin in the uterus, are affected by testosterone. Therefore, the effects of testosterone on these parameters in the uterus during receptivity period were investigated.

    MATERIALS AND METHODS: Ovariectomized adult female rats were given testosterone (1 mg/kg/day) alone or in combination with flutamide or finasteride between days 6 to 8 of sex-steroid replacement treatment, which was considered the period of uterine receptivity. Ultramorphology of tight junctions was visualized by transmission electron microscopy while distribution and expression of claudin-4 and occludin were examined by immunofluorescence and real-time polymerase chain reaction respectively.

    RESULTS: Administration of testosterone caused loss of tight junction complexity and down-regulated expression of claudin-4 and occludin in the uterus.

    CONCLUSION: Decreased endometrial tight junction complexity and expression of claudin-4 and occludin in the uterus during receptivity period by testosterone may interfere with embryo attachment and subsequent implantation.

    Matched MeSH terms: Claudin-4/genetics; Occludin/genetics
  16. Li Z, Jiang N, Lim EH, Chin WHN, Lu Y, Chiew KH, et al.
    Leukemia, 2020 09;34(9):2418-2429.
    PMID: 32099036 DOI: 10.1038/s41375-020-0774-4
    Identifying patient-specific clonal IGH/TCR junctional sequences is critical for minimal residual disease (MRD) monitoring. Conventionally these junctional sequences are identified using laborious Sanger sequencing of excised heteroduplex bands. We found that the IGH is highly expressed in our diagnostic B-cell acute lymphoblastic leukemia (B-ALL) samples using RNA-Seq. Therefore, we used RNA-Seq to identify IGH disease clone sequences in 258 childhood B-ALL samples for MRD monitoring. The amount of background IGH rearrangements uncovered by RNA-Seq followed the Zipf's law with IGH disease clones easily identified as outliers. Four hundred and ninety-seven IGH disease clones (median 2, range 0-7 clones/patient) are identified in 90.3% of patients. High hyperdiploid patients have the most IGH disease clones (median 3) while DUX4 subtype has the least (median 1) due to the rearrangements involving the IGH locus. In all, 90.8% of IGH disease clones found by Sanger sequencing are also identified by RNA-Seq. In addition, RNA-Seq identified 43% more IGH disease clones. In 69 patients lacking sensitive IGH targets, targeted NGS IGH MRD showed high correlation (R = 0.93; P = 1.3 × 10-14), better relapse prediction than conventional RQ-PCR MRD using non-IGH targets. In conclusion, RNA-Seq can identify patient-specific clonal IGH junctional sequences for MRD monitoring, adding to its usefulness for molecular diagnosis in childhood B-ALL.
    Matched MeSH terms: Immunoglobulin Heavy Chains/genetics*; Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
  17. Ariffin NM, Islahudin F, Kumolosasi E, Makmor-Bakry M
    Parasitol Res, 2019 Mar;118(3):1011-1018.
    PMID: 30706164 DOI: 10.1007/s00436-019-06210-3
    Eliminating the Plasmodium vivax malaria parasite infection remains challenging. One of the main problems is its capacity to form hypnozoites that potentially lead to recurrent infections. At present, primaquine is the only drug used for the management of hypnozoites. However, the effects of primaquine may differ from one individual to another. The aim of this work is to determine new measures to reduce P. vivax recurrence, through primaquine metabolism and host genetics. A genetic study of MAO-A, CYP2D6, CYP1A2 and CYP2C19 and their roles in primaquine metabolism was undertaken of healthy volunteers (n = 53). The elimination rate constant (Ke) and the metabolite-to-parent drug concentration ratio (Cm/Cp) were obtained to assess primaquine metabolism. Allelic and genotypic analysis showed that polymorphisms MAO-A (rs6323, 891G>T), CYP2D6 (rs1065852, 100C>T) and CYP2C19 (rs4244285, 19154G>A) significantly influenced primaquine metabolism. CYP1A2 (rs762551, -163C>A) did not influence primaquine metabolism. In haplotypic analysis, significant differences in Ke (p = 0.00) and Cm/Cp (p = 0.05) were observed between individuals with polymorphisms, GG-MAO-A (891G>T), CT-CYP2D6 (100C>T) and GG-CYP2C19 (19154G>A), and individuals with polymorphisms, TT-MAO-A (891G>T), TT-CYP2D6 (100C>T) and AA-CYP2C19 (19154G>A), as well as polymorphisms, GG-MAO-A (891G>T), TT-CYP2D6 (100C>T) and GA-CYP2C19 (19154G>A). Thus, individuals with CYP2D6 polymorphisms had slower primaquine metabolism activity. The potential significance of genetic roles in primaquine metabolism and exploration of these might help to further optimise the management of P. vivax infection.
    Matched MeSH terms: Cytochrome P-450 Enzyme System/genetics; Monoamine Oxidase/genetics
  18. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2019 01;42(1):147-158.
    PMID: 30740741 DOI: 10.1002/jimd.12036
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors/genetics*; Transaldolase/genetics
  19. Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, et al.
    Biol Sex Differ, 2019 03 25;10(1):13.
    PMID: 30909962 DOI: 10.1186/s13293-019-0227-9
    BACKGROUND: The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far.

    METHODS: To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716).

    RESULTS: Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73-0.89, P = 1.49 × 10-5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10-5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47-0.81, P = 4.37 × 10-4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10-2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10-4) and Taiwan datasets (P = 2.99 × 10-2).

    CONCLUSION: Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies.

    Matched MeSH terms: Nasopharyngeal Neoplasms/genetics*; Asian Continental Ancestry Group/genetics
  20. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Antigens, Dermatophagoides/genetics; Arthropod Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links