Results: Our results demonstrated that the viability of GdCl3 treated V79-4 cells was significantly (p 0.05) DNA damage both in the presence and absence of metabolic activation. However, it induced significant (p
METHODS: Cell counting kit 8(CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were conducted to study the influence of ZnC in the proliferating, invading and migrating processes of CRC cell lines (HCT116, LOVO) in vitro. The antitumor activity ZnC as well as its effects on tumor immune microenvironment were then assessed using CRC subcutaneous tumors in the C57BL/6 mouse model.
RESULTS: According to CCK8, EdU, transwell and wound healing assays, ZnC inhibited CRC cell lines in terms of proliferation, invasion and migration. ZnC could inhibit miR-570 for up-regulating PD-L1 expression. In vivo experiments showed that gavage (100 mg/kg, once every day) of ZnC inhibited the tumor growth of CRC, and the combination of ZnC and anti-PD1 therapy significantly improved the efficacy exhibited by anti-PD1 in treating CRC. In addition, mass cytometry results showed that immunosuppressive cells including regulatory T cells (tregs), bone marrow-derived suppressor cells (MDSC), and M2 macrophages decreased whereas CD8+ T cells elevated after adding ZnC.
CONCLUSIONS: The present study reveals that ZnC slows the progression of CRC by inhibiting CRC cells in terms of proliferation, invasion and migration, meanwhile up-regulating PD-L1 expression via inhibiting miR-570. The ZnC-anti-PD1 co-treatment assists in synergically increasing anti-tumor efficacy in CRC therapy.
PURPOSE: To investigate the effects of CC supplement on brain activity using functional magnetic resonance imaging (fMRI) among older adults with MCI.
STUDY TYPE: Prospective, randomized, double-blind, placebo-controlled trial.
POPULATION/SUBJECTS: Twenty older adults with mild cognitive impairment (60-75 years old), 14 of them (70%) were female subjects.
FIELD STRENGTH/SEQUENCE: A 3.0-T, T1-weighted anatomical images, T2*-weighted imaging data, A single shot, gradient echo-echo planar imaging (EPI) sequence.
ASSESSMENT: All subjects were asked to consume two 500 mg capsules of either CC supplement or placebo (maltodextrin) daily for 12 weeks. Cognitive function was measured using validated neuropsychological tests (i.e. Mini-mental State Examination and Digit Span) and task-based fMRI (N-back and Stroop Color Word Test) at baseline and 12th week. Brodmann's area 9, 46 and anterior cingulate cortex were selected as the regions of interest to define dorsolateral prefrontal cortex (DLPFC) in fMRI analysis.
STATISTICAL TESTS: Normality test was performed with the Shapiro-Wilk test. Two-way repeated ANOVA determined the intervention effects of the CC supplementation on brain activity after adjustments for covariates. Significance level at P
METHODS: This study is part of the Long-term Research Grant Scheme - Towards Useful Ageing cohort study in Malaysia. Of a total of 174 participants with complete trace elements and oxidative and DNA damage data during baseline, only 147 (84.5%) were successfully followed up after 18 months. Participants who experienced any fall events in the previous 18 months during the follow-up were categorized as fallers.
RESULTS: Thirty participants (20.4%) reported at least one fall in the previous 18 months. The mean concentrations of aluminium, lead and zinc were significantly higher (P
METHODS: The TCGA portal was employed in this investigation to find APOC1 expression in CRC. Its correlation with other genes and clinicopathological data was examined using the UALCAN database. To validate APOC1's cellular location, the Human Protein was employed. In order to forecast the relationship between APOC1 expression and prognosis in CRC patients, the Kaplan-Meier plotter database was used. TISIDB was also employed to evaluate the connection between immune responses and APOC1 expression in CRC. The interactions of APOC1 with other proteins were predicted using STRING. In order to understand the factors that contribute to liver metastasis from CRC, single-cell RNA sequencing (scRNA-seq) was done on one patient who had the disease. This procedure included sampling preoperative blood and the main colorectal cancer tissues, surrounding colorectal cancer normal tissues, liver metastatic cancer tissues, and normal liver tissues. Finally, an in vitro knockdown method was used to assess how APOC1 expression in tumor-associated macrophages (TAMs) affected CRC cancer cell growth and migration.
RESULTS: When compared to paracancerous tissues, APOC1 expression was considerably higher in CRC tissues. The clinicopathological stage and the prognosis of CRC patients had a positive correlation with APOC1 upregulation and a negative correlation, respectively. APOC1 proteins are mostly found in cell cytosols where they may interact with APOE, RAB42, and TREM2. APOC1 was also discovered to have a substantial relationship with immunoinhibitors (CD274, IDO1, and IL10) and immunostimulators (PVR, CD86, and ICOS). According to the results of scRNA-seq, we found that TAMs of CRC tissues had considerably more APOC1 than other cell groups. The proliferation and migration of CRC cells were impeded in vitro by APOC1 knockdown in TAMs.
CONCLUSION: Based on scRNA-seq research, the current study shows that APOC1 was overexpressed in TAMs from CRC tissues. By inhibiting APOC1 in TAMs, CRC progression was reduced in vitro, offering a new tactic and giving CRC patients fresh hope.
METHODS: MTT assay was performed to evaluate the cytotoxic effects of both compounds toward the cells after 24, 48 and 72 hours of exposure or treatment. The alkaline comet assay was conducted to determine the DNA damage on K562 cells after been exposed to both compounds for 30, 60 and 90 minutes.
RESULTS: The IC50 values obtained from K562 cells ranged from 0.01 to 0.30 μM, whereas for both Chang liver cell and lung fibroblast V79 cell, the values ranged from 0.10 to 0.40 μM. For genotoxicity evaluation, the percentage of damaged DNA is measured as an average of tail moment, and was found to be within 1.20 to 2.20 A.U while the percentage of DNA intensity ranging from 1.50 to 3.50% indicating no genotoxic effects.
CONCLUSION: Both compounds are cytotoxic toward leukemia cells and non-cancerous cells but do not exert their genotoxic effects towards leukemia cell.
METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.
RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.
CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.