Displaying publications 41 - 60 of 72 in total

Abstract:
Sort:
  1. Saidykhan L, Abu Bakar MZ, Rukayadi Y, Kura AU, Latifah SY
    Int J Nanomedicine, 2016;11:661-73.
    PMID: 26929622 DOI: 10.2147/IJN.S95885
    A local antibiotic delivery system (LADS) with biodegradable drug vehicles is recognized as the most effective therapeutic approach for the treatment of osteomyelitis. However, the design of a biodegradable LADS with high therapeutic efficacy is too costly and demanding. In this research, a low-cost, facile method was used to design vancomycin-loaded aragonite nanoparticles (VANPs) with the aim of understanding its potency in developing a nanoantibiotic bone implant for the treatment of osteomyelitis. The aragonite nanoparticles (ANPs) were synthesized from cockle shells by a hydrothermal approach using a zwitterionic surfactant. VANPs were prepared using antibiotic ratios of several nanoparticles, and the formulation (1:4) with the highest drug-loading efficiency (54.05%) was used for physicochemical, in vitro drug release, and biological evaluation. Physiochemical characterization of VANP was performed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Zetasizer. No significant differences were observed between VANP and ANP in terms of size and morphology as both samples were cubic shaped with sizes of approximately 35 nm. The Fourier transform infrared spectroscopy of VANP indicated a weak noncovalent interaction between ANP and vancomycin, while the zeta potential values were slightly increased from -19.4±3.3 to -21.2±5.7 mV after vancomycin loading. VANP displayed 120 hours (5 days) release profile of vancomycin that exhibited high antibacterial effect against methicillin-resistant Staphylococcus aureus ATCC 29213. The cell proliferation assay showed 80% cell viability of human fetal osteoblast cell line 1.19 treated with the highest concentration of VANP (250 µg/mL), indicating good biocompatibility of VANP. In summary, VANP is a potential formulation for the development of an LADS against osteomyelitis with optimal antibacterial efficacy, good bone resorbability, and biocompatibility.
  2. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
  3. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
  4. Chan HY, Meor Hussin AS, Ahmad NH, Rukayadi Y, Farouk AE
    Molecules, 2021 Aug 30;26(17).
    PMID: 34500692 DOI: 10.3390/molecules26175259
    Table eggs are an affordable yet nutritious protein source for humans. Unfortunately, eggs are a vector for bacteria that could cause foodborne illness. This study aimed to investigate the effectiveness of a quaternary ammonium compound (quat) sanitizer against aerobic mesophilic bacteria, yeast, and mold load on the eggshell surface of free-range and commercial farms and the post-treatment effect on microbial load during storage. Total aerobic mesophilic bacteria, yeast, and molds were enumerated using plate count techniques. The efficacy of the quaternary ammonium sanitizer (quat) was tested using two levels: full factorial with two replicates for corner points, factor A (maximum: 200 ppm, minimum: 100 ppm) and factor B (maximum: 15 min, minimum: 5 min). Quat sanitizer significantly (p < 0.05) reduced approximately 4 log10 CFU/cm2 of the aerobic mesophilic bacteria, 1.5 to 2.5 log10 CFU/cm2 of the mold population, and 1.5 to 2 log10 CFU/cm2 of the yeast population. However, there was no significant (p ≥ 0.05) response observed between individual factor levels (maximum and minimum), and two-way interaction terms were also not statistically significant (p ≥ 0.05). A low (<1 log10 CFU/cm2) aerobic mesophilic bacteria trend was observed when shell eggs were stored in a cold environment up to the production expiry date. No internal microbial load was observed; thus, it was postulated that washing with quat sanitizer discreetly (without physically damaging the eggshell) does not facilitate microbial penetration during storage at either room temperature or cold storage. Current study findings demonstrated that the quat sanitizer effectively reduced the microbial population on eggshells without promoting internal microbial growth.
  5. Karim NA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AF
    Asian Pac J Cancer Prev, 2016;17(8):3675-86.
    PMID: 27644601
    Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as "murungai" or "kelor". Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research needs to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.
  6. Santhanam RK, Fakurazi S, Ahmad S, Abas F, Ismail IS, Rukayadi Y, et al.
    Phytother Res, 2018 Aug;32(8):1608-1616.
    PMID: 29672974 DOI: 10.1002/ptr.6092
    The antiphoto aging property of Zanthoxylum rhetsa obtained from Pangkor Island, Malaysia, was evaluated. Solvent fractions of different polarity obtained from the methanolic extract of the bark material were initially tested for anticollagenase and antielastase activities. The ethyl acetate fraction showed bioactivity against the protease enzymes. Hence, it was subjected to further purification via column chromatography, to yield a major constituent, hesperidin. Subsequently, the ethyl acetate fraction and hesperidin were tested for their effects against UVB-induced cytotoxicity and expressions of inflammatory cytokines (IL-6, IL-1β, and TNF-α), NF-κB, and MMPs (MMP1, 3, and 9) in human dermal fibroblasts (HDF). Both fraction and pure compound prevented UVB-induced cytotoxicity in HDF cells, in a dose dependent manner. Moreover, the ethyl acetate fraction inhibited the increase of pro-inflammatory cytokines induced by UVB to a level similar to the control (without UV treatment). Additionally, the fraction significantly inhibited the expressions of NF-κB, MMP 1, MMP 3, and MMP 9 in HDF cells treated with UVB. Similar effects were observed with hesperidin. The results obtained suggested that the ethyl acetate fraction of Z. rhetsa and its bioactive constituent, hesperidin, have the potential to be used as active ingredients in sunscreen and antiphoto aging formulations.
  7. Mohd Abd Ghafar SL, Hussein MZ, Rukayadi Y, Abu Bakar Zakaria MZ
    Nanotechnol Sci Appl, 2017;10:79-94.
    PMID: 28572724 DOI: 10.2147/NSA.S120868
    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell-based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery.
  8. Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, et al.
    Front Microbiol, 2018;9:1555.
    PMID: 30061871 DOI: 10.3389/fmicb.2018.01555
    Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
  9. Voon WWY, Muhialdin BJ, Yusof NL, Rukayadi Y, Meor Hussin AS
    Appl Biochem Biotechnol, 2019 Jan;187(1):211-220.
    PMID: 29915916 DOI: 10.1007/s12010-018-2807-2
    Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.
  10. Chai KF, Chang LS, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Jan 15;271:298-308.
    PMID: 30236681 DOI: 10.1016/j.foodchem.2018.07.155
    A novel way to fully utilize rambutan fruit and seed is to ferment peeled fruits followed by drying and roasting, and use the seeds to produce seed powder similar to that of cocoa powder. Hence, the objective of this study was to optimize the roasting time and temperature of rambutan fruit post-fermentation and drying, and to produce a cocoa-like powder product from the seeds. Parameters monitored during roasting were colour and total phenolic content, while seed powder obtained using optimized roasting conditions was analyzed for its physicochemical properties and toxicity. The latter was examined using the brine shrimp lethality assay. Results showed that the roasted seed powder possessed colour and key volatile compounds similar to that of cocoa powder. Besides, the brine shrimp lethality assay indicated that the roasted seed powder was non-toxic. Thus, the fruit, including its seed could be fully utilized and subsequently, wastage could be reduced.
  11. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
  12. Kusuma SAF, Parwati I, Rostinawati T, Yusuf M, Fadhlillah M, Ahyudanari RR, et al.
    Heliyon, 2019 Nov;5(11):e02741.
    PMID: 31844694 DOI: 10.1016/j.heliyon.2019.e02741
    MPT64 is a specific protein that is secreted by Mycobacterium tuberculosis complex (MTBC). The objective of this study was to obtain optimum culture conditions for MPT64 synthetic gene expression in Escherichia coli BL21 (DE3) by response surface methodology (RSM). The RSM was undertaken to optimize the culture conditions under different cultivation conditions (medium concentration, induction time and inducer concentration), designed by the factorial Box-Bhenken using Minitab 17 statistical software. From the randomized combination, 15 treatments and three center point repetitions were obtained. Furthermore, expression methods were carried out in the flask scale fermentation in accordance with the predetermined design. Then, the MPT64 protein in the cytoplasm of E. coli cell was isolated and characterized using sodium dodecyl sulfate polyacrilamide electrophoresis (SDS-PAGE) then quantified using the ImageJ program. The optimum conditions were two-fold medium concentration (tryptone 20 mg/mL, yeast extract 10 mg/mL, and sodium chloride 20 mg/mL), 5 h of induction time and 4 mM rhamnose. The average concentration of recombinant MPT64 at optimum conditions was 0.0392 mg/mL, higher than the predicted concentration of 0.0311 mg/mL. In conclusion, the relationship between the selected optimization parameters strongly influenced the level of MPT64 gene expression in E. coli BL21 (DE3).
  13. Quek A, Mohd Zaini H, Kassim NK, Sulaiman F, Rukayadi Y, Ismail A, et al.
    PLoS One, 2021;16(5):e0251534.
    PMID: 33970960 DOI: 10.1371/journal.pone.0251534
    Melicope glabra (Blume) T. G. Hartley from the Rutaceae family is one of the richest sources of plant secondary metabolites, including coumarins and flavanoids. This study investigates the free radical scavenging and antibacterial activities of M. glabra and its isolated compounds. M. glabra ethyl acetate and methanol extracts were prepared using the cold maceration technique. The isolation of compounds was performed with column chromatography. The free radical scavenging activity of the extracts and isolated compounds were evaluated based on their oxygen radical absorbance capacity (ORAC) activities. The extracts and compounds were also subjected to antibacterial evaluation using bio-autographic and minimal inhibitory concentration (MIC) techniques against two oral pathogens, Enterococcus faecalis and Streptococcus mutans. Isolation of phytoconstituents from ethyl acetate extract successfully yielded quercetin 3, 5, 3'-trimethyl ether (1) and kumatakenin (2), while the isolation of the methanol extract resulted in scoparone (3), 6, 7, 8-trimethoxycoumarin (4), marmesin (5), glabranin (6), umbelliferone (7), scopoletin (8), and sesamin (9). The study is the first to isolate compound (1) from Rutaceae plants, and also the first to report the isolation of compounds (2-5) from M. glabra. The ORAC evaluation showed that the methanol extract is stronger than the ethyl acetate extract, while umbelliferone (7) exhibited the highest ORAC value of 24 965 μmolTE/g followed by glabranin (6), sesamin (9) and scopoletin (8). Ethyl acetate extract showed stronger antibacterial activity towards E. faecalis and S. mutans than the methanol extract with MIC values of 4166.7 ± 1443.4 μg/ml and 8303.3 ± 360.8 μg/ml respectively. Ethyl acetate extract inhibited E. faecalis growth, as shown by the lowest optical density value of 0.046 at a concentration of 5.0 mg/mL with a percentage inhibition of 95%. Among the isolated compounds tested, umbelliferone (7) and sesamin (9) exhibited promising antibacterial activity against S. mutans with both exhibiting MIC values of 208.3 ± 90.6 μg/ml. Findings from this study suggests M. glabra as a natural source of potent antioxidant and antibacterial agents.
  14. Gunasekharan M, Choi TI, Rukayadi Y, Mohammad Latif MA, Karunakaran T, Mohd Faudzi SM, et al.
    Molecules, 2021 Sep 01;26(17).
    PMID: 34500755 DOI: 10.3390/molecules26175314
    Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (1-15) were synthesized and evaluated for their potency against MRSA. The hydroxyl-containing compounds (8, 9, and 10) showed the most significant anti-MRSA efficiency, with the MIC and MBC values ranging from 0.08 to 0.70 mg/mL and 0.16 to 1.88 mg/mL, respectively. The time-kill curve and SEM analyses exhibited bacterial cell death within four hours after exposure to 9, suggesting its bactericidal properties. Furthermore, the docking simulation between 9 and penicillin-binding protein 2a (PBP2a, PDB ID: 6Q9N) suggests a relatively similar bonding interaction to the standard drug with a binding affinity score of -7.0 kcal/mol. Moreover, the zebrafish model showed no toxic effects in the normal embryonic development, blood vessel formation, and apoptosis when exposed to up to 40 µM of compound 9. The overall results suggest that the pyrrolylated-chalcones may be considered as a potential inhibitor in the design of new anti-MRSA agents.
  15. Maksum IP, Rustaman R, Deawati Y, Rukayadi Y, Utami AR, Nafisa ZK
    J Mol Model, 2024 Jul 09;30(8):260.
    PMID: 38981921 DOI: 10.1007/s00894-024-06060-6
    CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD.

    METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.

  16. Eliaser EM, Ho JH, Hashim NM, Rukayadi Y, Ee GCL, Razis AFA
    Molecules, 2018 Oct 20;23(10).
    PMID: 30347850 DOI: 10.3390/molecules23102708
    Natural products, either pure compounds or standardized plant extracts, have provided opportunities for the discovery of new drugs. Nowadays, most of the world's population still relies on traditional medicines for healthcare purposes. Plants, in particular, are always used as traditional medicine, as they contain a diverse number of phytochemicals that can be used for the treatment of diseases. The multicomponent feature in the plants is considered a positive phytotherapeutic hallmark. Hence, ethnopharmacognosy has been the focus for finding alternative treatments for diseases. Melicopelunu-ankenda, also known as Euodialunu-ankenda, is widely distributed in tropical regions of Asia. Different parts of M.lunu-ankenda have been used for treatment of hypertension, menstrual disorder, diabetes, and fever, and as an emmenagogue and tonic. It has also been consumed as salad and as a condiment for food flavorings. The justification of use of M.lunu-ankenda in folk medicines is supported by its reported biological activities, including its cytotoxic, antibacterial, antioxidant, analgesic, antidiabetic, and anti-inflammatory activities. This review summarizes the phytochemical compounds isolated from various parts of M.lunu-ankenda, such as root and leaves, and also its biological activities, which could make the species a new therapeutic agent for some diseases, including diabetes, in the future.
  17. Abd Karim NA, Adam AHB, Jaafaru MS, Rukayadi Y, Abdull Razis AF
    Molecules, 2023 Apr 04;28(7).
    PMID: 37049977 DOI: 10.3390/molecules28073214
    Inhibition of several protein pathways involved in cancer cell regulation is a necessary key in the discovery of cancer chemotherapy. Moringa oleifera Lam is often used in traditional medicine for the treatment of various illnesses. The plant contains glucomoringin isothiocyanate (GMG-ITC) with therapeutic potential against various cancer cells. Therefore, GMG-ITC was evaluated for its cytotoxicity against the PC-3 prostate cancer cell line and its potential to induce apoptosis. GMG-ITC inhibited cell proliferation in the PC-3 cell line with IC50 value 3.5 µg/mL. Morphological changes as a result of GMG-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GMG-ITC in a time-dependent manner. Moreover, GMG-ITC induced a time-dependent G2/M phase arrest, with reduction of 39.1% in the PC-3 cell line. GMG-ITC also activates apoptotic genes including caspase, tumor suppressor gene (p53), Akt/MAPK, and Bax of the proapoptotic Bcl family. Early apoptosis proteins (JNK, Bad, Bcl2, and p53) were significantly upregulated upon GMG-ITC treatment. It is concluded that apoptosis induction was observed in PC-3 cells treated with GMG-ITC. These phenomena suggest that GMG-ITC from M. oleifera seeds could be useful as a future cytotoxic agent against prostate cancer.
  18. Kusuma SAF, Parwati I, Subroto T, Rukayadi Y, Fadhlillah M, Rizaludin A
    J Adv Pharm Technol Res, 2021;12(2):180-184.
    PMID: 34159151 DOI: 10.4103/japtr.JAPTR_318_20
    In this study, the Mycobacterium tuberculosis protein 64 (MPT64) protein was constructed without any tags to facilitate the purification using column affinity chromatography, but the MPT64 must be obtained as a pure protein. This study was purpose to ensure the efficient extracting method to purify protein MPT64 directly from the polyacrylamide gel. The crude extract of extracellular protein containing MPT64 protein was separated into single protein band and the targeted protein which is located in the size of 24 kDa was excised. Each of the six bands was collected in a sterile microtube to be eluted using electroelution and the optimized of the passive-elution method. Both the elution methods demonstrated the purity level of the MPT64 protein by detecting a solely band on the gel at the 24 kDa. Among the variety of passive-elution time, the highest MPT64 protein concentration was 0.549 mg/ml after elution for 72 h. However, the electroelution result provided higher MPT64 protein concentration, i.e., 0.683 mg/mL. However, based on the recognition of the purified MPT64 protein on commercial detection kit of MPT64 protein, it showed that the positive result was only showed by the passive-elution extracting protein. Therefore, for purifying the protein MPT64 from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, the efficient method was passive elution.
  19. Trisha MR, Deavyndra Gunawan V, Wong JX, Pak Dek MS, Rukayadi Y
    Heliyon, 2024 Aug 30;10(16):e35691.
    PMID: 39247385 DOI: 10.1016/j.heliyon.2024.e35691
    Gnetum gnemon L. is an evergreen tree that belongs to the Gnetaceae family and is commonly used as a vegetable and medicinal plant among indigenous people. The key goal of this study was to assess the antibacterial efficacy of ethanolic G. gnemon leaf extract (EGLE) against six food-borne pathogens. The antimicrobial activity of EGLE was evaluated using multiple methods, including the well diffusion assay (WDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assay. Gas Chromatography-Mass Spectrometry (GC-MS) analysis was used to identify active volatile compounds responsible for EGLE's antibacterial activities. Total plate count (TPC) was conducted to measure microbial populations and evaluate the efficacy of EGLE as a natural preservative in raw quail eggs. 100 g of dried and powdered sample yielded an average of 11.58 ± 0.38 % post-extraction. The inhibition zone in WDA ranged from 11.00 ± 0.57-13.50 ± 0.58 mm, MIC ranged from 6.25 to 50.00 mg/mL, and MBC values were between 12.5 and >50 mg/mL. Results from the time-kill study showed that at 4 × MIC Bacillus pumilus and B. megaterium were completely killed in 1 h incubation time and other bacteria were killed within 2-4 h. Findings from TPC demonstrated that at the highest tested concentration of EGLE, there was no significant bacterial growth for a 30-day observation period. Thereby, suggesting that it had the potential to function as a natural preservative for raw quail eggs. EGLE may be a viable alternative to synthetic preservatives in combating food-borne pathogens.
  20. Syahidah A, Saad CR, Hassan MD, Rukayadi Y, Norazian MH, Kamarudin MS
    Pak J Biol Sci, 2017;20(2):70-81.
    PMID: 29022997 DOI: 10.3923/pjbs.2017.70.81
    BACKGROUND AND OBJECTIVE: The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle .

    METHODOLOGY: Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method.

    RESULTS: The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1.

    CONCLUSION: Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links