Displaying publications 41 - 60 of 597 in total

Abstract:
Sort:
  1. Ahmed N, Siow KS, Wee MFMR, Patra A
    Sci Rep, 2023 Jan 30;13(1):1675.
    PMID: 36717647 DOI: 10.1038/s41598-023-28811-w
    Cold plasma (low pressure) technology has been effectively used to boost the germination and growth of various crops in recent decades. The durability of these plasma-treated seeds is essential because of the need to store and distribute the seeds at different locations. However, these ageing effects are often not ascertained and reported because germination and related tests are carried out within a short time after the plasma-treatment. This research aims to fill that knowledge gap by subjecting three different types of seeds (and precursors): Bambara groundnuts (water), chilli (oxygen), and papaya (oxygen) to cold plasma-treatment. Common mechanisms found for these diverse seed types and treatment conditions were the physical and chemical changes induced by the physical etching and the cold plasma on the seeds and subsequent oxidation, which promoted germination and growth. The high glass transition temperature of the lignin-cellulose prevented any physical restructuring of the surfaces while maintaining the chemical changes to continue to promote the seeds germination and growth. These changes were monitored over 60 days of ageing using water contact angle (WCA), water uptake, electrical conductivity, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The vacuum effect was also investigated to separate its effect from cold plasma (low pressure). This finding offers a framework for determining how long agricultural seeds that have received plasma treatment can be used. Additionally, there is a need to transfer this research from the lab to the field. Once the impact of plasma treatment on seeds has been estimated, it will be simple to do so.
    Matched MeSH terms: Agriculture
  2. Kraft TS, Cummings DK, Venkataraman VV, Alami S, Beheim B, Hooper P, et al.
    Philos Trans R Soc Lond B Biol Sci, 2023 Jan 16;378(1868):20210431.
    PMID: 36440571 DOI: 10.1098/rstb.2021.0431
    Cooperation in food acquisition is a hallmark of the human species. Given that costs and benefits of cooperation vary among production regimes and work activities, the transition from hunting-and-gathering to agriculture is likely to have reshaped the structure of cooperative subsistence networks. Hunter-gatherers often forage in groups and are generally more interdependent and experience higher short-term food acquisition risk than horticulturalists, suggesting that cooperative labour should be more widespread and frequent for hunter-gatherers. Here we compare female cooperative labour networks of Batek hunter-gatherers of Peninsular Malaysia and Tsimane forager-horticulturalists of Bolivia. We find that Batek foraging results in high daily variation in labour partnerships, facilitating frequent cooperation in diffuse networks comprised of kin and non-kin. By contrast, Tsimane horticulture involves more restricted giving and receiving of labour, confined mostly to spouses and primary or distant kin. Tsimane women also interact with few individuals in the context of hunting/fishing activities and forage mainly with spouses and primary kin. These differences give rise to camp- or village-level networks that are more modular (have more substructure when partitioned) among Tsimane horticulturalists. Our findings suggest that subsistence activities shape the formation and extent of female social networks, particularly with respect to connections with other women and non-kin. We discuss the implications of restricted female labour networks in the context of gender relations, power dynamics and the adoption of farming in humans. This article is part of the theme issue 'Cooperation among women: evolutionary and cross-cultural perspectives'.
    Matched MeSH terms: Agriculture
  3. Hao Y, Sun H, Zeng X, Dong G, Kronzucker HJ, Min J, et al.
    Environ Pollut, 2023 Jan 15;317:120805.
    PMID: 36470457 DOI: 10.1016/j.envpol.2022.120805
    Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is associated with MP pollution in soils is largely unknown. Here, we collected soil samples from both smallholder and large-scale vegetable production systems to determine the distribution and characteristics of MPs. MP abundance in vegetable soils was 147.2-2040.4 MP kg-1 (averaged with 500.8 MP kg-1). Soil MP abundance under smallholder cultivation (730.9 MP kg-1) was twice that found under large-scale cultivation (370.7 MP kg-1). MP particle sizes in smallholder and large-scale farming were similar, and were mainly <1 mm. There were also differences in MP characteristics between the two types of vegetable soils: fragments (60%) and fibers (34%) were dominant under smallholder cultivation, while fragments (42%), fibers (42%), and films (11%) were dominant under large-scale cultivation. We observed a significant difference in the abundance of fragments and films under smallholder versus large-scale cultivation; the main components of MPs under smallholder cultivation were PP (34%), PE (28%), and PE-PP (10%), while these were PE (29%), PP (16%), PET (16%), and PE-PP (13%) under large-scale cultivation. By identifying the shape and composition of microplastics, it can be inferred that agricultural films were not the main MP pollution source in vegetable soil. We show that smallholder farming produces more microplastics pollution than large-scale farming in vegetable soil.
    Matched MeSH terms: Agriculture
  4. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
    Matched MeSH terms: Agriculture
  5. Warsame AA, Sheik-Ali IA, Barre GM, Ahmed A
    Environ Sci Pollut Res Int, 2023 Jan;30(2):3293-3306.
    PMID: 35945318 DOI: 10.1007/s11356-022-22227-1
    Agricultural production is sensitive to climate variability, so climate change-agriculture sector nexus is topical in developing countries. To this end, this study examines the impact of climate change variables-rainfall and temperature-and non-climatic factors on maize production in Somalia for the period between 1980 and 2018 using the autoregressive distributed lag (ARDL) bound test, dynamic ordinary least square (DOLS), variance decomposition(VD), and impulse response function (IRF). The empirical results of the ARDL bound test confirmed the presence of long-run cointegration between the dependent variable and the explanatory variables. Furthermore, the long-run results revealed that average temperature, average rainfall, and political instability significantly inhibit maize production in the long and short runs, but rainfall has a favorable effect on maize production in the short run. Furthermore, rural population and land area under maize cultivation have negative and positive effects on maize production in the long run, respectively-albeit they are statistically insignificant. The empirical results of the study are robust to different econometric methods. Based on these findings, the study emphasizes the importance of the de-escalation of conflicts and the implementation of irrigation facilities which will enhance the productivity of maize crop production.
    Matched MeSH terms: Agriculture/methods
  6. Alsaleh M, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2023 Jan;30(5):12825-12843.
    PMID: 36114960 DOI: 10.1007/s11356-022-22583-y
    There are many advantages of the hydropower industry, as an environmentally friendly resource, and also some challenges that need to be overcome to fully exploit this sustainable and renewable natural resource. The primary objective of this study is to find out the impact of hydropower factors and economic growth on the agriculture industry output among the EU27 nations within the time factor 1990 to 2021. Adopting the autoregressive distributed lag (ARDL), the findings show a significant positive effect could occur in agriculture industry growth of the European Union (EU13)-emerging economies using hydropower factors than in EU14-emerged economies. On one hand, among additional factors, economic growth and institutional quality contribute more positively to agriculture growth in EU13 economies than in EU14 economies. On the other hand, population density contributes more negatively to agriculture growth in EU13 economies than in EU14 economies. The findings show there can be a positive significant growth increase in the EU13 agriculture industry using fossil fuel output than in EU14 economies. The results show that growth could be sustained in the agricultural industry of the European nations by increasing the level of hydropower production as this will help in attaining sustainable development by the year 2030. This will therefore help in mitigating the effect of climatic changes due to environmental pollution. The projected calculations were seen to be reliable and valid and this was attested to by the three estimators used in the study (pooled mean group, mean group, and dynamic fixed effect). This study recommended that European nations could leverage hydroelectricity to achieve sustainable growth and development. The legislative arms of the government of these European nations should as well show more interest in green energy to achieve security and sustainable development in hydroelectricity production. Decision-makers in the EU nations should buttress more emphasis on sustainable means through which hydropower could be used to attain sustainable irrigation systems for the agriculture industry and thus minimize the demand for fossil fuels and reduce CO2-related emissions in the future tine ahead.
    Matched MeSH terms: Agriculture
  7. Kabir MH, Nur-E-Alam SM, Datta A, Tan ML, Rahman MS
    PLoS One, 2023;18(9):e0292254.
    PMID: 37773932 DOI: 10.1371/journal.pone.0292254
    The use of pheromone traps can minimize the excess application of synthetic insecticides, while can also benefit the environment. The use of pheromone traps has been promoted and suggested to vegetable farmers of Bangladesh for widespread adoption. However, the majority of farmers have continued to spray insecticides instead of using pheromone traps. The present study investigated the factors influencing farmers' adoption, dis-adoption, and non-adoption behavior of pheromone traps for managing insect pests. Primary data were collected from 438 vegetable growers. Data were analyzed using descriptive statistics and multinomial logistic regression. About 27% of the farmers abandoned the technique shortly after it was adopted as it was time-consuming to manage insect pests. Marginal effect analysis revealed that the likelihood of continued adoption was 34.6% higher for farmers who perceived that pheromone traps were useful in controlling insect pests. In contrast, the likelihood of dis-adoption was 16.5% and 10.4% higher for farmers who maintained communication with private pesticide company agents and neighbor farmers, respectively. Extension services by government extension personnel might be encouraged and maintained as a key component in increasing farmer awareness regarding the use of pheromone trap. Strategies to promote pheromone traps in vegetable production should highlight the positive impacts to farmers and the environment, as this would most likely lead to their continued and widespread use after initial adoption.
    Matched MeSH terms: Agriculture
  8. Wimalasiri EM, Ashfold MJ, Jahanshiri E, Walker S, Azam-Ali SN, Karunaratne AS
    PLoS One, 2023;18(3):e0283298.
    PMID: 36952502 DOI: 10.1371/journal.pone.0283298
    Current agricultural production depends on very limited species grown as monocultures that are highly vulnerable to climate change, presenting a threat to the sustainability of agri-food systems. However, many hundreds of neglected crop species have the potential to cater to the challenges of climate change by means of resilience to adverse climate conditions. Proso millet (Panicum miliaceum L.), one of the underutilised minor millets grown as a rainfed subsistence crop, was selected in this study as an exemplary climate-resilient crop. Using a previously calibrated version of the Agricultural Production Systems Simulator (APSIM), the sensitivity of the crop to changes in temperature and precipitation was studied using the protocol of the Coordinated Climate Crop Modelling Project (C3MP). The future (2040-2069) production was simulated using bias-corrected climate data from 20 general circulation models of the Coupled Model Intercomparison Project (CMIP5) under RCP4.5 and 8.5 scenarios. According to the C3MP analysis, we found a 1°C increment of temperature decreased the yield by 5-10% at zero rainfall change. However, Proso millet yields increased by 5% within a restricted climate change space of up to 2°C of warming with increased rainfall. Simulated future climate yields were lower than the simulated yields under the baseline climate of the 1980-2009 period (mean 1707 kg ha-1) under both RCP4.5 (-7.3%) and RCP8.5 (-16.6%) though these changes were not significantly (p > 0.05) different from the baseline yields. Proso millet is currently cultivated in limited areas of Sri Lanka, but our yield mapping shows the potential for expansion of the crop to new areas under both current and future climates. The results of the study, indicating minor impacts from projected climate change, reveal that Proso millet is an excellent candidate for low-input farming systems under changing climate. More generally, through this study, a framework that can be used to assess the climate sensitivity of underutilized crops was also developed.
    Matched MeSH terms: Agriculture/methods
  9. Tan SP, Ng LC, Lyndon N, Aman Z, Kannan P, Hashim K, et al.
    PeerJ, 2023;11:e15228.
    PMID: 37151297 DOI: 10.7717/peerj.15228
    BACKGROUND: Malaysia is strongly supported by the agriculture sector as the backbone to drive the economy. However, COVID-19 has significantly affected agriculture across the production, supply, and marketing chains. It also disturbs the balance of food supply and demand in Malaysia. COVID-19 was an unexpected pandemic that resulted in shock and panic and caused a huge global impact. However, the impacts of this pandemic on the agriculture sector in Malaysia, particularly in the production and supply chains, are still unclear and scarce. This review offers insights into the challenges, particularly in sustaining agri-food production and supply chains. It also highlights the opportunity and relevant measures towards sustainability in agriculture to avoid agri-food disasters in the future.

    METHODS: This study was carried out through a desk review of the secondary source of information covering the impact of COVID-19 in Malaysia particularly in the agri-food aspect, and a wide range of strategies and initiatives as the effective measures to overcome the crisis of this pandemic. Online desk research of the government published data and customer desk research were utilized to complete this study. Search engines such as Google Scholar and the statistical data from the official websites including the Department of Statistics Malaysia (DOSM) and the Food and Fertilizer Technology Center for the Asian and Pacific Region (FFTC-AP), were utilized. Keywords such as impact of COVID-19, pandemic, and agri-food supply chain were used to conduct the searches. The articles identified to be related to the study's objective were then downloaded and included in the study. Descriptive methods were used as the primary analysis technique following the descriptive analysis and visual data analysis in performing the sources obtained.

    RESULTS: This devastating impact damages the lives by causing 4.3 million confirmed infections and more than 290,000 deaths. This disease presents an unprecedented challenge to the public health. The lockdown restriction under the movement control order (MCO), for more than of the world's population in the year 2020 to control the virus from spreading, has disrupted most of the economic sectors. The agriculture industry was seen as one of the essential industries and allowed to operate under strict standard operating procedures (SOP). Working under strict regulations came with a huge price paid for almost all industries.

    CONCLUSION: This pandemic has affected the national agri-food availability and accessibility in Malaysia. This outbreak created a reflection of opportunity for sharing a more flexible approaches in handling emergencies on agricultural food production and supply chains. Therefore, the government should be ready with the roadmap and enforce the measures to control the pandemic without disrupting the agri-food supply chain in the near future.

    Matched MeSH terms: Agriculture
  10. Sabrina J, Nurulhuda K, Amin AM, Sulaiman MF, Man HC
    Environ Pollut, 2022 Dec 15;315:120282.
    PMID: 36174812 DOI: 10.1016/j.envpol.2022.120282
    Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH3 volatilization. The volatilized NH3 represents monetary loss and contributes to increase in formation of PM2.5 in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH3 is also a precursor to N2O formation. Thus, it is important to monitor NH3 volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH3 absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH3 sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH3 was obtained for each of the trapping methods. Highest level of NH3 was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH3 under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
    Matched MeSH terms: Agriculture
  11. Begum M, Masud MM, Alam L, Mokhtar MB, Amir AA
    Environ Sci Pollut Res Int, 2022 Dec;29(58):87923-87937.
    PMID: 35819668 DOI: 10.1007/s11356-022-21845-z
    Several studies have highlighted the significant impact of climate change on agriculture. However, there have been little empirical enquiries into the impact of climate change on marine fish production, particularly in Bangladesh. Hence, this study aims to investigate the impact of climate change on marine fish production in Bangladesh using data from 1961 to 2019. Data were obtained from the Food and Agriculture Organization, Bangladesh Meteorological Department, the World Development Indicators, and the National Oceanic and Atmospheric Administration. The autoregressive distributed lag (ARDL) model was used to describe the dynamic link between CO2 emissions, average temperature, Sea Surface Temperature (SST), rainfall, sunshine, wind and marine fish production. The ARDL approach to cointegration revealed that SST (β = 0.258), rainfall (β =0.297), and sunshine (β =0.663) significantly influence marine fish production at 1% and 10% levels in the short run and at 1% level in the long run. The results also found that average temperature has a significant negative impact on fish production in both short and long runs. On the other hand, CO2 emissions have a negative impact on marine fish production in the short run. Specifically, for every 1% rise in CO2 emissions, marine fish production will decline by 0.11%. The findings of this study suggest that policymakers formulate better policy frameworks for climate change adaptation and sustainable management of marine fisheries at the national level. Research and development in Bangladesh's fisheries sector should also focus on marine fish species that can resist high sea surface temperatures, CO2 emissions, and average temperatures.
    Matched MeSH terms: Agriculture/methods
  12. Farhadinia MS, Waldron A, Kaszta Ż, Eid E, Hughes A, Ambarlı H, et al.
    Commun Biol, 2022 Nov 29;5(1):1221.
    PMID: 36443482 DOI: 10.1038/s42003-022-04061-w
    Aichi Target 11 committed governments to protect ≥17% of their terrestrial environments by 2020, yet it was rarely achieved, raising questions about the post-2020 Global Biodiversity Framework goal to protect 30% by 2030. Asia is a challenging continent for such targets, combining high biodiversity with dense human populations. Here, we evaluated achievements in Asia against Aichi Target 11. We found that Asia was the most underperforming continent globally, with just 13.2% of terrestrial protected area (PA) coverage, averaging 14.1 ± SE 1.8% per country in 2020. 73.1% of terrestrial ecoregions had <17% representation and only 7% of PAs even had an assessment of management effectiveness. We found that a higher agricultural land in 2015 was associated with lower PA coverage today. Asian countries also showed a remarkably slow average annual pace of 0.4 ± SE 0.1% increase of PA extent. These combined lines of evidence suggest that the ambitious 2030 targets are unlikely to be achieved in Asia unless the PA coverage to increase 2.4-5.9 times faster. We provided three recommendations to support Asian countries to meet their post-2020 biodiversity targets: complete reporting and the wider adoption "other effective area-based conservation measures"; restoring disturbed landscapes; and bolstering transboundary PAs.
    Matched MeSH terms: Agriculture
  13. Dorairaj D, Govender N, Zakaria S, Wickneswari R
    Sci Rep, 2022 Nov 23;12(1):20162.
    PMID: 36424408 DOI: 10.1038/s41598-022-24484-z
    Agriculture plays a crucial role in safeguarding food security, more so as the world population increases gradually. A productive agricultural system is supported by seed, soil, fertiliser and good management practices. Food productivity directly correlates to the generation of solid wastes and utilization of agrochemicals, both of which negatively impact the environment. The rice and paddy industry significantly adds to the growing menace of waste management. In low and middle-income countries, rice husk (RH) is an underutilized agro-waste discarded in landfills or burned in-situ. RH holds enormous potential in the development of value-added nanomaterials for agricultural applications. In this study, a simple and inexpensive sol-gel method is described to extract mesoporous silica nanoparticles (MSNs) from UKMRC8 RH using the bottom-up approach. RHs treated with hydrochloric acid were calcinated to obtain rice husk ash (RHA) with high silica purity (> 98% wt), as determined by the X-ray fluorescence analysis (XRF). Calcination at 650 °C for four hours in a box furnace yielded RHA that was devoid of metal impurities and organic matter. The X-ray diffraction pattern showed a broad peak at 2θ≈20-22 °C and was free from any other sharp peaks, indicating the amorphous property of the RHA. Scanning electron micrographs (SEM) showed clusters of spherically shaped uniform aggregates of silica nanoparticles (NPs) while transmission electron microscopy analysis indicated an average particle size of 
    Matched MeSH terms: Agriculture
  14. Tan YL, Chen JE, Yiew TH, Habibullah MS
    Environ Sci Pollut Res Int, 2022 Sep;29(42):63260-63276.
    PMID: 35459997 DOI: 10.1007/s11356-022-20054-y
    South and Southeast Asia is by far the most populous region in Asia, with the greatest number of threatened species. Changes in habitat are a major contributor to biodiversity loss and are more common as a result of land-use changes. As a result, the goal of this study is to use negative binomial regression models to investigate habitat change as one of the important drivers of biodiversity loss in South and Southeast Asian countries from 2013 to 2018. According to the negative binomial estimates, the findings for the habitat change measures are quantitatively similar for the impacts of agricultural land and arable land on biodiversity threats. Agricultural and arable land both have a positive impact on biodiversity loss. We found that, contrary to our expectations, the forest area appears to have an unexpected direct influence on the number of threatened species. A higher number of threatened species is associated with rising per capita income, human population and a low level of corruption control. Finally, the empirical findings are consistent across taxonomic groups, habitat change measures and Poisson-based specifications. Some policy implications that could mitigate biodiversity loss include educating and promoting good governance among the population and increase the conservation effort to sustain green area and national forest parks in each country.
    Matched MeSH terms: Agriculture
  15. Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, et al.
    Chemosphere, 2022 Mar;291(Pt 2):133036.
    PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036
    The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
    Matched MeSH terms: Agriculture
  16. Pocha CKR, Chia SR, Chia WY, Koyande AK, Nomanbhay S, Chew KW
    Chemosphere, 2022 Mar;290:133246.
    PMID: 34906526 DOI: 10.1016/j.chemosphere.2021.133246
    The ever-growing human population has resulted in the expansion of agricultural activity; evident by the deforestation of rainfoamrests as a means of acquiring fertile land for crops. The crops and fruits produced by such means should be utilized completely; however, there are still losses and under-exploitation of these produces which has resulted in wastes being mounted in landfills. These underutilized agricultural wastes including vegetables and fruits can serve as a potential source for biofuels and green diesel. This paper discusses the main routes (e.g., biological and thermochemical) for producing biofuels such as bioethanol, biodiesel, biogas, bio-oil and green diesel from underutilized crops by emphasizing recent technological innovations for improving biofuels and green diesel yields. The future prospects of a successful production of biofuels and green diesel by this source are also explained. Underutilized lignocelluloses including fruits and vegetables serve as a prospective biofuel and green diesel generation source for the future prosperity of the biofuel industry.
    Matched MeSH terms: Agriculture
  17. Wu Y, Rahman RA, Yu Q
    Environ Monit Assess, 2022 Feb 08;194(3):154.
    PMID: 35132444 DOI: 10.1007/s10661-022-09817-9
    Sustainable agriculture is important for preserving environmental health and simultaneously gaining economic profits while maintaining social and economic equity. One way to evaluate sustainable agriculture is by studying agricultural eco-efficiency (AEE). Hence, this study constructed a data-driven method to evaluate and optimize AEE with the aim of providing a basis for improving the sustainable development of regional agriculture. Sixteen cities in Anhui Province, China, were considered in the study, and the variables used were agricultural resource inputs, environmental pollution, and agricultural economic development. Agricultural non-point source pollution (NPSP) emissions were considered the undesired output to build an AEE evaluation index system. Furthermore, a data envelopment analysis (DEA) model was established to analyse AEE from the static and dynamic perspectives. The spatial development and the temporal and spatial characteristics of AEE were also analysed. In addition, we applied a random effect (RE) panel Tobit model to quantitatively analyse the influencing factors of AEE from the input perspective and then proposed reasonable suggestions for improving the sustainable development of regional agriculture. Our findings show that the overall agricultural development in the 16 cities in Anhui Province has been continuously improving, even though there is an agglomeration of spatial development in some regions. In conclusion, this study provides suggestions and references for policy makers and agricultural practitioners regarding how to improve regional AEE and promote the sustainable development of the regional agricultural economy.
    Matched MeSH terms: Agriculture*
  18. Feng Y, Feng Y, Liu Q, Chen S, Hou P, Poinern G, et al.
    Environ Pollut, 2022 Feb 01;294:118598.
    PMID: 34861331 DOI: 10.1016/j.envpol.2021.118598
    Biochar has been considered as a potential tool to mitigate soil ammonia (NH3) volatilization and greenhouse gases (GHGs) emissions in recent years. However, the aging effect of biochar on soils remains elusive, which introduces uncertainty on the effectiveness of biochar to mitigate global warming in a long term. Here, a meta-analysis of 22 published works of literature with 217 observations was conducted to systematically explore the aging effect of biochar on soil NH3 and GHGs emissions. The results show that, in comparison with the fresh biochar, the aging makes biochar more effective to decrease soil NH3 volatilization by 7% and less risk to contribute CH4 emissions by 11%. However, the mitigation effect of biochar on soil N2O emissions is decreased by 15% due to aging. Additionally, aging leads to a promotion effect on soil CO2 emissions by 25% than fresh biochar. Our findings suggest that along with aging, particularly the effect of artificial aging, biochar could further benefit the alleviation of soil NH3 volatilization, whereas its potential role to mitigate global warming may decrease. This study provides a systematic assessment of the aging effect of biochar to mitigate soil NH3 and GHGs, which can provide a scientific basis for the sustainable green development of biochar application.
    Matched MeSH terms: Agriculture
  19. Bhaskar KA, Al-Hashimi A, Meena M, Meena VS, Langyan S, Shrivastava M, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(7):9792-9804.
    PMID: 34508308 DOI: 10.1007/s11356-021-16370-4
    A large amount of ammonia volatilization from the agricultural system causes environmental problems and increases production costs. Conservation agriculture has emerged as an alternate and sustainable crop production system. Therefore, in the present study, ammonia losses from different agricultural practices were evaluated for the wheat crop under different tillage practices. The results of the present study showed that the cumulative emission of ammonia flux from the wheat field varied from 6.23 to 24.00 kg ha-1 (P ≤ 0.05) in conservation tillage (CA) and 7.03 to 26.58 kg ha-1 (P ≤ 0.05) in conventional tillage (CT) among different treatments. Application of basal 80% nitrogen resulted in the highest ammonia flux in conventional and conservation tillage practices. The ammonia volatilization followed the following trend: urea super granules with band placement > neem-coated urea with band placement > neem-coated urea with broadcast before irrigation > neem-coated urea with broadcast after irrigation > slow-release N fertilizer (urea stabilized with DCD and N(n-butyl)thiophosphoric triamide) with band placement. The conservation agricultural practices involving conservation tillage appear to be a sustainable approach for minimizing ammonia volatilization and improving wheat productivity.
    Matched MeSH terms: Agriculture
  20. Chandio AA, Shah MI, Sethi N, Mushtaq Z
    Environ Sci Pollut Res Int, 2022 Feb;29(9):13211-13225.
    PMID: 34585355 DOI: 10.1007/s11356-021-16670-9
    This paper examines the effect of climate change and financial development on agricultural production in ASEAN-4, namely Indonesia, Malaysia, the Philippines, and Thailand from 1990 to 2016. Further, we explore the role of renewable energy, institutional quality, and human capital on agricultural production. Since the shocks in one country affect another country, we use second-generation modeling techniques to find out the relationship among the variables. The Westerlund (2007) cointegration tests confirm long-run relationship among the variables. The results from cross-sectionally augmented autoregressive distributed lag (CS-ARDL) model reveal that climate change negatively affects agricultural production; on the other hand, renewable energy, human capital, and institutional quality affect positively agricultural production. Moreover, renewable energy utilization, human capital, and intuitional quality moderates the effect of carbon emission on agricultural production. In addition, a U-shaped relationship exists between financial development and agricultural production, suggesting that financial development improves agricultural production only after reaching a certain threshold. Hence, this study suggests that ASEAN-4 countries must adopt flexible financial and agricultural policies so that farmers would be benefitted and agricultural production can be increased.
    Matched MeSH terms: Agriculture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links