Displaying publications 41 - 60 of 194 in total

Abstract:
Sort:
  1. Adelin Anwar, Liew J, Mohd Talib Latif, Mohamed Rozali Othman
    Sains Malaysiana, 2010;39:169-174.
    Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon.
    Matched MeSH terms: Air Pollutants
  2. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
    Matched MeSH terms: Air Pollutants/analysis*
  3. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
    Matched MeSH terms: Air Pollutants/analysis*
  4. Sansuddin N, Ramli NA, Yahaya AS, Yusof NF, Ghazali NA, Madhoun WA
    Environ Monit Assess, 2011 Sep;180(1-4):573-88.
    PMID: 21136287 DOI: 10.1007/s10661-010-1806-8
    Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as "localized haze". General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM(10) concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM(10) concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m(3)) for PM(10) concentrations. The short-term prediction for PM(10) exceedances in 14 days was obtained using the autoregressive model.
    Matched MeSH terms: Air Pollutants/analysis*
  5. Latif MT, Baharudin NH, Velayutham P, Awang N, Hamdan H, Mohamad R, et al.
    Environ Monit Assess, 2011 Oct;181(1-4):479-89.
    PMID: 21181256 DOI: 10.1007/s10661-010-1843-3
    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.
    Matched MeSH terms: Air Pollutants/analysis*
  6. MacKenzie AR, Langford B, Pugh TA, Robinson N, Misztal PK, Heard DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3177-95.
    PMID: 22006961 DOI: 10.1098/rstb.2011.0053
    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
    Matched MeSH terms: Air Pollutants/chemistry
  7. Eshkoor SA, Ismail P, Rahman SA, Moin S
    Arh Hig Rada Toksikol, 2011 Dec;62(4):291-8.
    PMID: 22202462 DOI: 10.2478/10004-1254-62-2011-2088
    The aim of our study was to see the effects of GSTP1 polymorphism on biomarkers of ageing, including micronuclei (MN), comet tail length, and relative telomere length in automobile repair workers, who are exposed to a broad spectrum of potential mutagens. The analysis was performed on buccal cells collected from occupationally exposed and non-exposed (control) subjects. Samples were analysed using cytogenetic and molecular methods, including restriction fragment length polymorphism (RFLP), MN test, comet assay, and real-time PCR. The results confirmed the DNA damaging effects of substances used in the mechanical workshops, but did not confirm the influence of GSTP1 gene polymorphism on DNA damage. However, further studies on both occupationally exposed and control populations are needed to understand the relationship between GSTP1 polymorphism and genome damage.
    Matched MeSH terms: Air Pollutants, Occupational/adverse effects*
  8. Show KY, Ng CA, Faiza AR, Wong LP, Wong LY
    Water Sci Technol, 2011;64(12):2439-44.
    PMID: 22170839 DOI: 10.2166/wst.2011.824
    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.
    Matched MeSH terms: Air Pollutants/chemistry
  9. Nor Mohd Razif Noraini, Leman, A.M., Ahmad Sayuti Zainal Abidin
    MyJurnal
    A preliminary study has been conducted in a new constructed 8 stories building (2 level of Hostels facility, 3 level of Training Room, 2 Level of Offices and 1 level of Exhibition Halls and Rooms) in Bandar Baru Bangi, Selangor. The Hostels facility is a floor tile and furnished with build in locker and use split air conditioning system while the Training Room and Exhibition Rooms used floor tile. The Offices and Exhibition Hall are carpeted furnished. All these spaces were using centralized air conditioning systems. A pre-commissioning assessment on 5 chemical parameters of indoor air pollutants such Total Volatile Organic Compounds (TVOC), Formaldehyde, Respirable Particulates (PM!
    Matched MeSH terms: Air Pollutants
  10. Jasim M. Rajab, Mat Jafri, M.Z, Lim, H.S., Abdullah, K.
    MyJurnal
    Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant. It is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. It is produced by the incomplete combustion of fossil fuels, and biomass burning. The CO data are obtained from Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite. The AIRS provides information for several greenhouse gases, CO2, CH4, CO, and O3 as a one goal of the AIRS instrument (included on the EOS Aqua satellite launched, May 4, 2002) as well as to improve weather prediction of the water and energy cycle. The results of the analysis of the retrieved CO total column amount (CO_total_column_A) as well as effective of the CO volume mixing ratio (CO_VMR_eff_A), Level-3 monthly (AIR*3STM) 1º*1º spatial resolution, ascending are used to study the CO distribution over the East and West Malaysia for the year 2003. The CO maps over the study area were generated by using Kriging Interpolation technique and analyzed by using Photoshop CS. Variations in the biomass burning and the CO emissions where noted, while the highest CO occurred at late dry season in the region which has experienced extensive biomass burning and greater draw down of CO occurred in the pristine continental environment (East Malaysia). In all cases, the CO concentration at West Malaysia is higher than East Malaysia. The southeastern Sarawak (lat. 3.5˚ - long. 115.5˚) is less polluted regions and less the CO in most of times in the year. Examining satellite measurements revealed that the enhanced CO emission correlates with occasions of less rainfall during the dry season.
    Matched MeSH terms: Air Pollutants
  11. Ahmad Sayuti Zainal Abidin, Leman, A.M., Nor Mohd Razif Noraini
    MyJurnal
    This study was done to investigate the background level on microbiological indoor air pollutants in new constructed 8 stories buildings (2 level of Hostel facilities, 3 level of Training Room level, 2 level of Offices and 1 Exhibition Halls and Rooms) in Bandar Baru Bangi, Selangor. The offices and exhibition hall are carpeted furnished. All these spaces were using centralized air conditioning system. Airborne microbes’ concentrations were determined by using a single stage impactor (Biosampler) as per requirement of National Institute of Occupational Safety and Health NIOSH method NIOSH Manual Analytical Method MAM 0800. Mean concentration of total bacteria detected is 1351 CFU/m3 and it was found significantly higher compared to maximum exposure limit 500 CFU/m3 in office room. The mean concentration of total fungi in the office rooms is 479 CFU/m3 and it was found slightly lower compared to maximum exposure limit 500 CFU/m3. The airborne microbe levels were found slightly lower in the accommodation, training and exhibition rooms compared to office room. These findings indicate that although a new constructed building should be having a significant background level of airborne microbe (total bacteria and total fungi).
    Matched MeSH terms: Air Pollutants
  12. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
    Matched MeSH terms: Air Pollutants/analysis*
  13. Chuen OC, Yusoff S
    J Air Waste Manag Assoc, 2012 Mar;62(3):299-306.
    PMID: 22482288
    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
    Matched MeSH terms: Air Pollutants/chemistry
  14. Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I
    Environ Monit Assess, 2012 Mar;184(3):1325-34.
    PMID: 21472384 DOI: 10.1007/s10661-011-2043-5
    This study aims to determine the composition of surfactants in the lake surface microlayer, rainwater, and atmospheric aerosols in the area surrounding Lake Chini, Pahang. Surfactants in the lake surface microlayer were taken from seven different stations around the lake, while samples of rainwater were taken from five different sampling stations. The samples of atmospheric aerosols were collected from the Lake Chini Research Centre which is in close proximity to the lake. The colorimetric analysis method was used to determine the composition and concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The concentration of anionic surfactants, as MBAS, in the surface microlayer ranged between 0.08 to 0.23 μmol L(-1), while the range of concentration of cationic surfactants as DBAS ranged from 0.09 to 0.11 μmol L(-1). The concentration of MBAS was higher in rainwater when compared to surfactants in the lake surface microlayer. The high concentration of surfactants in the fine mode of atmospheric aerosols suggests that natural and anthropogenic sources of surfactants contribute to the atmospheric surfactants.
    Matched MeSH terms: Air Pollutants/analysis
  15. Mahmudur Rahman M, Kim KH
    J Hazard Mater, 2012 May 15;215-216:233-42.
    PMID: 22424818 DOI: 10.1016/j.jhazmat.2012.02.055
    A number of offensive odorants including volatile organic compounds (VOCs), reduced sulfur compounds (RSCs), carbonyls, and ammonia were measured along with several reference pollutants (like benzene (B), CS(2), SO(2), CO, and total hydrocarbon (THC)) from combusted fumes of barbecue charcoals produced from five different countries (Korea, China, Indonesia, Malaysia, and the US). Although the emission concentrations of most odorants were generally below the reference guideline set by the malodor prevention law in Korea, the mean concentration of some aldehydes (acetaldehyde, propionaldehyde, and isovaleraldehyde) and ammonia exceeded those guidelines. As such, aldehydes were the most dominant odorant released from charcoal combustion followed by VOC and ammonia. If odorant levels of charcoal products are compared, there are great distinctions between the products of different countries. If comparison is made using the concept of the sum of odor intensity (SOI), the magnitude of SOI for the charcoal products from the five different countries varied in the order of 4.30 (Korea), 3.10 (Indonesia), 2.97 (China), 2.76 (Malaysia), and 2.76 (the US).
    Matched MeSH terms: Air Pollutants/analysis*
  16. Abdullah MZ, Saat AB, Hamzah ZB
    Environ Monit Assess, 2012 Jun;184(6):3959-69.
    PMID: 21822578 DOI: 10.1007/s10661-011-2236-y
    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.
    Matched MeSH terms: Air Pollutants/analysis*
  17. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Air Pollutants/analysis*
  18. Lan TT, Binh NT
    Sci Total Environ, 2012 Dec 15;441:248-57.
    PMID: 23142415 DOI: 10.1016/j.scitotenv.2012.08.086
    A new home-made diffusive bag-type passive sampler called Lanwatsu was developed for benzene, toluene, ethylbenzene and xylene monitoring in roadside air. The passive samplers were outdoor validated and deployed together with two commercial passive samplers, Ultra I SKC Inc. and Radiello, for daily roadside air monitoring in East Asian cities including HoChiMinh, Hanoi, Cantho, Danang, Vungtau, Hue (Vietnam), Kuala Lumpur (Malaysia), Kyoto, Osaka (Japan), Nanjing (China) and Singapore in 2011. High daily benzene concentrations of 87, 52, 32, 23, 13, 12 and 48 µg/m³ were observed in HoChiMinh, Hanoi, Cantho, Danang, Hue, Vung Tau (Vietnam), and Kuala Lumpur (Malaysia), respectively. Kyoto and Osaka (Japan) were clean with daily benzene concentrations below 2.3 μg/m³. The daily benzene concentrations in Nanjing (China) and Singapore were 5.6 and 6.9 μg/m³, respectively. The three passive samplers were equivalent. Passive sampling by the Lanwatsu passive sampler is acceptable for daily outdoor benzene monitoring.
    Matched MeSH terms: Air Pollutants/analysis*
  19. Ahmad Syazrin Muhammad, Juliana Jalaludin, NurAqilah M. Yusof
    MyJurnal
    Exposure to traffic air pollutant have shown a significant health effect on respiratory systems and decreased in lung function among traffic policemen. The main objective of this study was to determine the relationships between personal exposure levels to PM2.5 and respiratory health among traffic policemen working at Traffic Police Station in Kuala Lumpur and general duty policemen attached to Police Headquarters, Bukit Aman. A cross sectional comparative study was conducted among 50 traffic policemen from Traffic Police Station Kuala Lumpur and 50 general duty policemen from Police Headquarters Bukit Aman as comparative group. A purposive sampling method was used to select the respondents based on inclusive criteria such as age between 25 to 60 years, no history of respiratory disease and working not less than 3 years as traffic policemen. Questionnaire based on ATS (1978) was used to collect information on socio-demographic and respiratory symptoms. Spirometer (Spirolab II Model) was used to perform lung function tests. Personal Air Sampling Pump (Aircheck 52) was used to measure personal exposure level to PM2.5. The mean exposure level of PM2.5 among the traffic policemen was 22.33 ± 8.54μg/m³ compared to only 5.60 ± 4.29μg/m³ for comparative group. There was a significant difference in all lung function parameters between the exposed group and comparative group.From the finding, it shows that there was significant relationship between working duration (years) and lung function parameters among both exposed and comparative group. The result from this research shows that traffic policemen were determined as having lower lung function parameters due to their nature of work and the environment. Also, there was a significant association between exposure to fine particle (PM2.5) and lung function among the exposed group. Finding from this study indicated that exposure to elevated concentration level to traffic related air pollutant was the risk factors in the development of respiratory diseases as shown by the higher prevalence of respiratory symptoms and the reduction in lung function among traffic policemen.
    Matched MeSH terms: Air Pollutants
  20. Motorykin O, Matzke MM, Waters KM, Massey Simonich SL
    Environ Sci Technol, 2013 Apr 2;47(7):3410-6.
    PMID: 23472838 DOI: 10.1021/es305295d
    The objective of this research was to investigate the relationship between lung cancer mortality rates, carcinogenic polycyclic aromatic hydrocarbon (PAH) emissions, and smoking on a global scale, as well as for different socioeconomic country groups. The estimated lung cancer deaths per 100,000 people (ED100000) and age standardized lung cancer death rate per 100,000 people (ASDR100000) in 2004 were regressed on PAH emissions in benzo[a]pyrene equivalence (BaPeq), smoking prevalence, cigarette price, gross domestic product per capita, percentage of people with diabetes, and average body mass index using simple and multiple linear regression for 136 countries. Using stepwise multiple linear regression, a statistically significant positive linear relationship was found between loge(ED100000) and loge(BaPeq) emissions for high (p-value <0.01) and for the combination of upper-middle and high (p-value <0.05) socioeconomic country groups. A similar relationship was found between loge(ASDR100000) and loge(BaPeq) emissions for the combination of upper-middle and high (p-value <0.01) socioeconomic country groups. Conversely, for loge(ED100000) and loge(ASDR100000), smoking prevalence was the only significant independent variable in the low socioeconomic country group (p-value <0.001). These results suggest that reducing BaPeq emissions in the U.S., Canada, Australia, France, Germany, Brazil, South Africa, Poland, Mexico, and Malaysia could reduce ED100000, while reducing smoking prevalence in Democratic People's Republic of Korea, Nepal, Mongolia, Cambodia, and Bangladesh could significantly reduce the ED100000 and ASDR100000.
    Matched MeSH terms: Air Pollutants/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links