Displaying publications 41 - 60 of 525 in total

Abstract:
Sort:
  1. Ung CY, Teoh TC
    J Biosci, 2014 Jun;39(3):493-504.
    PMID: 24845512
    DARPP-32 (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.
    Matched MeSH terms: Amino Acid Sequence
  2. Abdul Manas NH, Pachelles S, Mahadi NM, Illias RM
    PLoS One, 2014;9(9):e106481.
    PMID: 25221964 DOI: 10.1371/journal.pone.0106481
    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.
    Matched MeSH terms: Amino Acid Sequence
  3. Kuah MK, Jaya-Ram A, Shu-Chien AC
    Biochim. Biophys. Acta, 2015 Mar;1851(3):248-60.
    PMID: 25542509 DOI: 10.1016/j.bbalip.2014.12.012
    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.
    Matched MeSH terms: Amino Acid Sequence
  4. Mohd-Lila MA, Yee LK, Cen LS, Bala JA, Balakrishnan KN, Allaudin ZN, et al.
    Microb Pathog, 2019 Sep;134:103572.
    PMID: 31163251 DOI: 10.1016/j.micpath.2019.103572
    The common physical and chemical methods for controlling rat pest are less than satisfactory and inhumane. Immunocontraception approach has been considered more humane and it can be accomplished by inducing the relevant host immune response that block further development of reproductive gametes. ZP3 proteins are known to play very important role during sperm-ovum fertilization. It is a self-antigen and only localized in female ovaries. Therefore, an immunization with ZP3 protein elsewhere will induce a generalize host immune response against ZP3 protein. This study employed rat ZP3 (rZP3) gene prepared from its cDNA of Rattus rattus diardii. It was delivered and expressed in vivo by naked plamid DNA (DrZP3) or recombinant ZP3-Adenovirus (Ad-rZP3). Expression studies in vitro with DrZP3 or Ad-ZP3 showed rZP3 proteins were successfully expressed in Vero cells. Hyperimmune serum against rZP3 that were prepared by immunizing several rats with purified rZP3-pichia yeast fusion protein showed it blocked sperms from binding DrZP3-transfected Vero cells. Female Sprague Dawley rats immunized with DrZP3 demonstrated a long-term effect for significant reduction of fertility up to 92.6%. Ovaries from rats immunized with DrZP3 were severely atrophied with disappearance of primordial follicles from ovarian cortex with an increased in the amount of oocyte-free cell clusters. Female rats immunized with Ad-rZP3 demonstrated 27% reduction of fertility. The infertility induced by Ad-rZP3 is comparatively low and ineffective. This could be due to a strong host immune response that suppresses the recombinant virus itself resulted in minimum rZP3 protein presentation to the host immune system. As a result, low antibody titers produced against rZP3 is insufficient to block oocytes from maturity and fertilization. Therefore, immunization with DrZP3 for immunocontraception is more effective than Ad-rZP3 recombinant adenovirus. It is proposed to explore further on the use of adenovirus or other alternative viruses to deliver ZP3 protein and for the development of enhanced expression of rZP3 in target host.
    Matched MeSH terms: Amino Acid Sequence
  5. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
    Matched MeSH terms: Amino Acid Sequence
  6. Shullia NI, Raffiudin R, Juliandi B
    Trop Life Sci Res, 2019 Jan;30(1):89-107.
    PMID: 30847035 DOI: 10.21315/tlsr2019.30.1.6
    Genes related to carbohydrate metabolism have evolved rapidly in eusocial bees, including honey bees. However, the characterisation of carbohydrate metabolism genes has not been reported in Apis andreniformis or Apis cerana indica. This study aimed to characterise phosphofructokinase (PFK) and pyruvate kinase (PK) genes in these honey bee species and to analyse the evolution of the genus Apis using these genes. This study found the first data regarding A. andreniformis PFK and PK-like nucleotide sequences. A BLAST-n algorithm-based search showed that A. andreniformis and A. c. indica PFK and PK genes were homologous with those of Apis florea and Apis cerana cerana from Korea, respectively. Multiple alignments of PFKs from five Apis species showed many exon gains and losses, but only one among the PKs. Thus, the exon-intron organisation of the PK genes may be more conserved compare with that of the PFKs. Another evolutionary pattern indicated that more nucleotide substitutions occurred in Apis' PK than PFK genes. Deduced PFK amino acid sequences revealed a PFK consensus pattern of 19 amino acids, while the deduced PK amino acid sequences were predicted to have barrel and alpha/beta domains. Based on these two metabolism-related genes, The Neighbour-joining and Maximum likelihood phylogenetic trees are congruent and revealed that the A. andreniformis and A. florea group were in the basal position. Apis mellifera, A. cerana, and Apis dorsata formed a monophyletic clade, although the positions of A. mellifera and A. dorsata were different in the nucleotide- and amino acid-based phylogenetic trees.
    Matched MeSH terms: Amino Acid Sequence
  7. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS
    Sci Rep, 2018 05 31;8(1):8499.
    PMID: 29855618 DOI: 10.1038/s41598-018-26749-y
    Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient's appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
    Matched MeSH terms: Amino Acid Sequence
  8. Norlia B., Norwati M., Norwati A., Mohd Rosli H., Norihan M. S.
    MyJurnal
    This study was part of the larger studies to isolate and characterize gene related to flowering in teak. This study isolated differentially expressed genes of teak flowering tissues. One of the genes encodes plant protein kinases highly homologous to the AtSK-II of Arabidopsis GSK3/SHAGGY subfamily. The gene was named as Tectona grandis SHAGGY kinase (Tg-SK). The protein sequence of this gene contained the characteristic catalytic domain of GSK-3/SHAGGY protein kinase. The gene also shows the same genomic organization of 11 introns and 12 exons. Although the size of the introns varies, the positions of exon/intron boundaries are very similar to AtSK-II. The discovery of this gene in teak, which is a forest tree species, supports the hypothesis, which suggested the gene is found in all eukaryotes.
    Matched MeSH terms: Amino Acid Sequence
  9. Alassiri M, Lai JY, Ch'ng ACW, Choong YS, Alanazi A, Lim TS
    Sci Rep, 2023 Aug 21;13(1):13627.
    PMID: 37604859 DOI: 10.1038/s41598-023-40630-7
    Antibody phage display is a key tool for the development of monoclonal antibodies against various targets. However, the development of anti-peptide antibodies is a challenging process due to the small size of peptides for binding. This makes anchoring of peptides a preferred approach for panning experiments. A common approach is by using streptavidin as the anchor protein to present biotinylated peptides for panning. Here, we propose the use of recombinant expression of the target peptide and an immunogenic protein as a fusion for panning. The peptide inhibitor of trans-endothelial migration (PEPITEM) peptide sequence was fused to the Mycobacterium tuberculosis (Mtb) α-crystalline (AC) as an anchor protein. The panning process was carried out by subtractive selection of the antibody library against the AC protein first, followed by binding to the library to PEPITEM fused AC (PEPI-AC). A unique monoclonal scFv antibodies with good specificity were identified. In conclusion, the use of an alternative anchor protein to present the peptide sequence coupled with subtractive panning allows for the identification of unique monoclonal antibodies against a peptide target.
    Matched MeSH terms: Amino Acid Sequence
  10. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Amino Acid Sequence
  11. Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, et al.
    J Exp Bot, 2017 Nov 02;68(18):5045-5055.
    PMID: 29036360 DOI: 10.1093/jxb/erx331
    Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
    Matched MeSH terms: Amino Acid Sequence
  12. Flatt JF, Musa RH, Ayob Y, Hassan A, Asidin N, Yahya NM, et al.
    Br J Haematol, 2012 Jul;158(2):262-273.
    PMID: 22571328 DOI: 10.1111/j.1365-2141.2012.09149.x
    Red cells with the D-- phenotype do not express the RHCE protein because of mutations in both alleles of the RHCE gene. At present, little is known of the effect this has on the normal function of erythrocytes. In this study a group of five families belonging to a nomadic tribe in Malaysia were identified as carriers of the D-- haplotype. Analysis of homozygous individuals' genomic DNA showed two separate novel mutations. In four of the families, RHCE exons 1, 9 and 10 were present, while the 5th family possessed RHCE exons 1-3 and 10. Analysis of cDNA revealed hybrid transcripts, suggesting a gene conversion event with RHD, consistent with previously reported D-- mutations. Immunoblotting analysis of D-- erythrocyte membrane proteins found that Rh-associated glycoprotein (RHAG) migrates with altered electrophoretic mobility on sodium dodecyl sulphate polyacrylamide gel electrophoresis, consistent with increased glycosylation. Total amounts of Rh polypeptide in D-- membranes were comparable with controls, indicating that the exalted D antigen displayed by D-- red cells may be associated with altered surface epitope presentation. The adhesion molecules CD44 and CD47 are significantly reduced in D--. Together these results suggest that absence of RHCE polypeptide alters the structure and packing of the band 3/Rh macrocomplex.
    Matched MeSH terms: Amino Acid Sequence
  13. Gabrielsen M, Abdul-Rahman PS, Othman S, Hashim OH, Cogdell RJ
    Acta Crystallogr F Struct Biol Commun, 2014 Jun;70(Pt 6):709-16.
    PMID: 24915077 DOI: 10.1107/S2053230X14008966
    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.
    Matched MeSH terms: Amino Acid Sequence
  14. Teh BA, Choi SB, Musa N, Ling FL, Cun ST, Salleh AB, et al.
    BMC Struct Biol, 2014;14:7.
    PMID: 24499172 DOI: 10.1186/1472-6807-14-7
    Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.
    Matched MeSH terms: Amino Acid Sequence
  15. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, et al.
    Interdiscip Sci, 2018 Mar;10(1):157-168.
    PMID: 27475956 DOI: 10.1007/s12539-016-0180-9
    We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
    Matched MeSH terms: Amino Acid Sequence
  16. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Amino Acid Sequence
  17. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM
    J Mol Model, 2015 Mar;21(3):63.
    PMID: 25721655 DOI: 10.1007/s00894-015-2617-1
    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
    Matched MeSH terms: Amino Acid Sequence*
  18. Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, et al.
    J Comput Aided Mol Des, 2012 Aug;26(8):947-61.
    PMID: 22710891 DOI: 10.1007/s10822-012-9585-7
    The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.
    Matched MeSH terms: Amino Acid Sequence
  19. Wong MT, Choi SB, Kuan CS, Chua SL, Chang CH, Normi YM, et al.
    Int J Mol Sci, 2012;13(1):901-17.
    PMID: 22312293 DOI: 10.3390/ijms13010901
    Klebsiella pneumoniae is a Gram-negative, cylindrical rod shaped opportunistic pathogen that is found in the environment as well as existing as a normal flora in mammalian mucosal surfaces such as the mouth, skin, and intestines. Clinically it is the most important member of the family of Enterobacteriaceae that causes neonatal sepsis and nosocomial infections. In this work, a combination of protein sequence analysis, structural modeling and molecular docking simulation approaches were employed to provide an understanding of the possible functions and characteristics of a hypothetical protein (KPN_02809) from K. pneumoniae MGH 78578. The computational analyses showed that this protein was a metalloprotease with zinc binding motif, HEXXH. To verify this result, a ypfJ gene which encodes for this hypothetical protein was cloned from K. pneumoniae MGH 78578 and the protein was overexpressed in Escherichia coli BL21 (DE3). The purified protein was about 32 kDa and showed maximum protease activity at 30 °C and pH 8.0. The enzyme activity was inhibited by metalloprotease inhibitors such as EDTA, 1,10-phenanthroline and reducing agent, 1,4-dithiothreitol (DTT). Each molecule of KPN_02809 protein was also shown to bind one zinc ion. Hence, for the first time, we experimentally confirmed that KPN_02809 is an active enzyme with zinc metalloprotease activity.
    Matched MeSH terms: Amino Acid Sequence
  20. Luan Eng LI, Wiltshire BG, Lehmann H
    Biochim. Biophys. Acta, 1973 Oct 18;322(2):224-30.
    PMID: 4765089
    Matched MeSH terms: Amino Acid Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links