Displaying publications 41 - 60 of 526 in total

Abstract:
Sort:
  1. Brown S, Muhamad N, C Pedley K, C Simcock D
    Mol Biol Res Commun, 2014 Mar;3(1):21-32.
    PMID: 27843974
    Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km) of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1) it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2) even when it is possible, a considerable quantity of high quality data is required.
    Matched MeSH terms: Catalysis
  2. Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S
    Chem Rec, 2016 06;16(3):1591-634.
    PMID: 27230414 DOI: 10.1002/tcr.201500279
    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience.
    Matched MeSH terms: Catalysis
  3. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Catalysis
  4. Shahul Hamid MY, Triwahyono S, Jalil AA, Che Jusoh NW, Izan SM, Tuan Abdullah TA
    Inorg Chem, 2018 May 21;57(10):5859-5869.
    PMID: 29746104 DOI: 10.1021/acs.inorgchem.8b00241
    Nickel (Ni), cobalt (Co), and zinc (Zn) loaded on fibrous silica KCC-1 was investigated for CO2 methanation reactions. Ni/KCC-1 exhibits the highest catalyst performance with a CH4 formation rate of 33.02 × 10-2 molCH4 molmetal-1 s-1, 1.77 times higher than that of Co/KCC-1 followed by Zn/KCC-1 and finally the parent KCC-1. A pyrrole adsorption FTIR study reveals shifting of perturbed N-H stretching decreasing slightly with the addition of metal oxide, suggesting that the basic sites of catalyst were inaccessible due to metal oxide deposition. The strengths of basicity were found to follow sthe equence KCC-1, Ni/KCC-1, Zn/KCC-1, and Co/KCC-1. The data were supported by N2 adsorption desorption analysis, where Co/KCC-1 displayed the greatest reduction in total surface area whereas Ni/KCC-1 displayed the least reduction. The elucidation of difference mechanism pathways has also been studied by in situ IR spectroscopy studies to determine the role of different metal oxides in CO2 methanation. It was discovered that Ni/KCC-1 and Co/KCC-1 follow a dissociative mechanism of CO2 methanation in which the CO2 molecule was dissociated on the surface of the metal oxide before migration onto the catalyst surface. This was confirmed by the evolution of a peak corresponding to carbonyl species (COads) on a metal oxide surface in FTIR spectra. Zn/KCC-1, on the other hand, showed no such peak, indicating associative methanation pathways where a hydrogen molecule interacts with an O atom in CO2 to form COads and OH. These results offers a better understanding for catalytic studies, particularly in the field of CO2 recycling.
    Matched MeSH terms: Catalysis
  5. Maryam M, Tan SL, Crouse KA, Mohamed Tahir MI, Chee HY
    Turk J Chem, 2020;44(5):1395-1409.
    PMID: 33488239 DOI: 10.3906/kim-2006-22
    A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
    Matched MeSH terms: Catalysis
  6. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(5):505-14.
    PMID: 25843280 DOI: 10.5650/jos.ess14228
    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
    Matched MeSH terms: Catalysis
  7. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
    Matched MeSH terms: Catalysis
  8. Wong WY, Lim S, Pang YL, Shuit SH, Chen WH, Lee KT
    Sci Total Environ, 2020 Jul 20;727:138534.
    PMID: 32334218 DOI: 10.1016/j.scitotenv.2020.138534
    Interest in biodiesel research has escalated over the years due to dwindling fossil fuel reserves. The implementation of a carbon-based solid acid catalyst in biodiesel production eradicates the separation problems associated with homogeneous catalysis. However, its application in the glycerol-free interesterification process for biodiesel production is still rarely being studied in the literature. In this study, novel environmentally benign catalysts were prepared from oil palm empty fruit bunch (OPEFB) derived activated carbon (AC) which is sustainable and low cost via direct sulfonation using concentrated sulfuric acid. The effects of synthesizing variables such as carbonization and sulfonation temperatures with different holding times towards the fatty acid methyl ester (FAME) yield in interesterification reaction with oleic acid and methyl acetate were investigated in detail. It was found that the optimum carbonization temperature and duration together with sulfonation temperature and duration were 600 °C, 3 h, 100 °C and 6 h, respectively. The catalyst possessed an amorphous structure with a high total acid density of 9.0 mmol NaOH g-1 due to the well-developed porous framework structure of the carbon support. Under these optimum conditions, the OPEFB derived solid acid catalyst recorded an excellent catalytic activity of 50.5% methyl oleate yield at 100 °C after 8 h with 50:1 methyl acetate to oleic acid molar ratio and 10 wt% catalyst dosage. The heterogeneous acid catalyst derived from OPEFB had shown promising properties that made them highly suitable for cost-effective and environmental-friendly glycerol-free biodiesel production.
    Matched MeSH terms: Catalysis
  9. Aishah AJ, Nobuhito K, Tokuda M
    Med J Malaysia, 2004 May;59 Suppl B:210-1.
    PMID: 15468892
    Highly reactive zinc metal was prepared by electrolysis of a N,N-dimethylformamide (DMF) solution containing naphthalene and a supporting electrolyte in a one-compartment cell fitted with a platinum cathode and a zinc anode. This highly reactive electrogenerated zinc (EGZn/Naph) was used for transformation of ethyl 2-bromoacrylate into the corresponding organozinc compound, which can not be achieved by the use of usual zinc metals. Reaction of the organozinc compounds thus prepared with various aryl halides in the presence of 5 mol% of palladium catalyst gave the corresponding cross-coupling products in high yields. These cross-coupling reactions were successfully applied to a synthesis of the precursor of anti-inflammatory agents such as ibuprofen, naproxen, cicloprofen and suprofen.
    Matched MeSH terms: Catalysis
  10. Ayoub M, Khayoon MS, Abdullah AZ
    Bioresour Technol, 2012 May;112:308-12.
    PMID: 22437049 DOI: 10.1016/j.biortech.2012.02.103
    The synthesis of oxygenated fuel additives via solvent freebase-catalyzed etherification of glycerol is reported. The products of glycerol etherification arediglycerol (DG) and triglycerol (TG) with DG being the favorable one. The catalytic activity of different homogeneous alkali catalysts (LiOH, NaOH, KOH and Na(2)CO(3)) was investigated during the glycerol etherification process. LiOH exhibited an excellent catalytic activity during this reaction, indicated by the complete glycerol conversion with a corresponding selectivity of 33% toward DG. The best reaction conditions were a reaction temperature of 240°C, a catalyst/glycerol mass ratio of 0.02 and a reaction time of 6h. The influences of various reaction variables such as nature of the catalyst, catalyst loading, reaction time and reaction temperature on glycerol etherification were elucidated. Industrially, the findings attained in this study might contribute towards promoting the biodiesel industry through utilization of its by-products.
    Matched MeSH terms: Catalysis
  11. Koguleshun S, Pua FL, Shamala G, Nabihah S
    Sains Malaysiana, 2015;44:1573-1577.
    Oil palm empty fruit bunch (EFB) contributes to a large quantity of lignocellulosic waste. It is an abundantly available
    waste biomass in Malaysia. This project was aimed to utilize the waste materials for a better benefit. EFB were used as
    raw material to prepare a new solid catalyst for biodiesel production. Solid acid catalyst derived from EFB was used to
    catalyze the esterification process in biodiesel production from waste cooking oil. Solid acid catalyst was prepared by
    direct impregnation with transition metal sulfides, Fe2
    (SO4
    )3
    . This new catalyst was used to catalyze the esterification of
    high free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs) as pre-treatment step prior to biodiesel production.
    The highest catalytic activity with 90.95% esterification rate was achieved. The catalyst can be easily separated for
    reuse compared to homogenous catalyst which are used in biodiesel production. EFB has the potential to be converted
    into useful feedstock and the derived catalyst can replace the traditional liquid acid catalyst in biodiesel production
    especially for high acid value content feedstock.
    Matched MeSH terms: Catalysis
  12. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Catalysis
  13. Balakrishnan K, Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Jan;128:788-91.
    PMID: 23186664 DOI: 10.1016/j.biortech.2012.10.023
    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.
    Matched MeSH terms: Catalysis
  14. Rahman NA, Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9749-54.
    PMID: 21855332 DOI: 10.1016/j.biortech.2011.07.023
    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.
    Matched MeSH terms: Catalysis
  15. Nizam MK, Sebastian D, Kairi MI, Khavarian M, Mohamed AR
    Sains Malaysiana, 2017;46:1039-1045.
    The synthesis of high quality graphene via economic way is highly desirable for practical applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM, Raman spectroscopy and SAED analysis were carried out on the synthesized graphene. The formation of single, bilayer and few layer of graphene from Cu/MgO catalyst derived from recovered Cu was feasible.
    Matched MeSH terms: Catalysis
  16. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
    Matched MeSH terms: Catalysis
  17. Olutoye MA, Lee SC, Hameed BH
    Bioresour Technol, 2011 Dec;102(23):10777-83.
    PMID: 21983406 DOI: 10.1016/j.biortech.2011.09.033
    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.
    Matched MeSH terms: Catalysis
  18. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Jun;102(11):6392-8.
    PMID: 21486692 DOI: 10.1016/j.biortech.2011.03.039
    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.
    Matched MeSH terms: Catalysis
  19. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
    Matched MeSH terms: Catalysis
  20. Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, et al.
    Chemosphere, 2021 Sep;278:130469.
    PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469
    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
    Matched MeSH terms: Catalysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links