Displaying publications 41 - 60 of 86 in total

Abstract:
Sort:
  1. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al.
    Cells, 2019 Sep 20;8(10).
    PMID: 31547193 DOI: 10.3390/cells8101118
    Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
    Matched MeSH terms: Cell Transformation, Neoplastic
  2. Jayaram G, Looi LM
    Malays J Pathol, 1994 Jun;16(1):83-7.
    PMID: 16329582
    A five-month-old male baby presented with an abdominal mass which was found on computerised tomography (CT) to be involving the left kidney. Nephrectomy and histopathological study showed morphological featues of a malignant rhabdoid tumour. The tumour cells stained strongly for cytokeratin and epithelial membrane antigen and less intensely for vimentin. Electron microscopy revealed concentric whorled arrays of intermediate filaments within the tumour cell cytoplasm. The child was put on post-operative chemotherapy and radiotherapy but developed bilateral lung metastases and died three months after surgery.
    Matched MeSH terms: Cell Transformation, Neoplastic
  3. Shahruzaman SH, Fakurazi S, Maniam S
    Cancer Manag Res, 2018;10:2325-2335.
    PMID: 30104901 DOI: 10.2147/CMAR.S167424
    Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
    Matched MeSH terms: Cell Transformation, Neoplastic
  4. Muhammad Fauzi HG, Mohan Singh AS, Abdul Rahim S, Chooi LL, Ramasamy V, Mohamad Pakarul Razy NH, et al.
    Gulf J Oncolog, 2021 May;1(36):79-81.
    PMID: 35017141
    Malignant transformation of recurrent respiratory papillomatosis (RRP) is a rare entity occurring in only less than 5% of patients with RRP. The risk of transformation can arise even in the absence of risk factors such as smoking and radiation. We describe a patient with juvenile RRP diagnosed since childhood, who suffered malignant transformation into a squamous cell carcinoma after 29 years. Keywords: Recurrent respiratory papillomatosis; laryngeal neoplasms; squamous cell carcinoma; human papilloma-virus.
    Matched MeSH terms: Cell Transformation, Neoplastic
  5. Mohamed Yusoff AA
    J Cancer Res Ther, 2015 Jul-Sep;11(3):535-44.
    PMID: 26458578 DOI: 10.4103/0973-1482.161925
    Brain tumor is molecularly a heterogeneous group of diseases, and genetic factors seem to play a crucial role in its genesis. Even though multiple alterations in the nuclear-encoded genes such as tumor suppressor and oncogenes are believed to play a key role in brain tumorigenesis, the involvement of the mitochondrial genome to this event remains controversial to date. Mitochondrial DNA (mtDNA) has been suspected to be associated with the carcinogenesis because of its high sensitivity to mutations and inefficient repair mechanisms in comparison to nuclear DNA. Thus, defects in mtDNA could also lead to the development of brain tumor. By virtue of their clonal nature and high copy number, mtDNA mutations may provide a new effective molecular biomarker for the cancer detection. It has been suggested that establishing mtDNA defective pattern might be useful in cancer diagnostics and detection, the prognosis of cancer outcome, and/or the response to certain treatments. This mini-review gives a brief overview on the several aspects of mtDNA, with a particular focus on its role in tumorigenesis and progression of brain tumor. Understanding the role of mitochondria and brain tumor development could potentially translate into therapeutic strategies for patients with these tumors.
    Matched MeSH terms: Cell Transformation, Neoplastic
  6. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Mohtarrudin N
    BMC Complement Altern Med, 2015;15(1):431.
    PMID: 26638207 DOI: 10.1186/s12906-015-0954-3
    Drastic increment of skin cancer incidence has driven natural product-based chemoprevention as a promising approach in anticancer drug development. Apart from its traditional usages against various ailments, Ardisia crispa (Family: Myrsinaceae) specifically its triterpene-quinone fraction (TQF) which was isolated from the root hexane extract (ACRH) was recently reported to exert antitumor promoting activity in vitro. This study aimed at determining chemopreventive effect of TQF against chemically-induced mouse skin tumorigenesis as well as elucidating its possible pathway(s).
    Matched MeSH terms: Cell Transformation, Neoplastic/drug effects
  7. Wynn, Aye Aye, Myint, Ohnmar, Mya, Nang Khin
    MyJurnal
    Apoptosis is a programmed cell death which occurs following a variety of stimuli. Physiologically the process is important for morphogenesis of organs and homeostasis of different types of cells. Apoptotic cell death is responsible for a variety of pathologic states such as elimination of cell death in mutated cells, infected cells, tumour cells and transplant rejection well as the pathological atrophy. In this review, there is discussion about the control of apoptosis, detection methods of apoptosis, its association with infectious and non-communicable diseases. Intracellular microorganisms survive through inhibition of host cell apoptosis as well as they destroy the parenchymal cells causing impaired functions. It plays important role in tumourigenesis. There are possible therapeutic roles of drugs that modify apoptosis in human diseases.
    Matched MeSH terms: Cell Transformation, Neoplastic
  8. Visvanathan R, Thambidorai CR, Myint H
    Ann Acad Med Singap, 1992 Nov;21(6):830-2.
    PMID: 1338270
    Two patients, members of one family, with Peutz-Jeghers syndrome are described who underwent surgery for bowel obstruction. Both had multiple polyps in the gastrointestinal tract. Severe dysplasia and adenomatous change were present in two hamartomatous polyps adjacent to a stenosing colonic carcinoma in one patient and moderate dysplasia and adenomatous change were observed in two hamartomatous rectal polyps in his son. These changes support recent reports in the literature of progression towards neoplasia in these lesions.
    Matched MeSH terms: Cell Transformation, Neoplastic/pathology
  9. Wai Hon K, Zainal Abidin SA, Othman I, Naidu R
    Cancers (Basel), 2020 Aug 31;12(9).
    PMID: 32878019 DOI: 10.3390/cancers12092462
    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
    Matched MeSH terms: Cell Transformation, Neoplastic
  10. Mohidin TB, Ng CC
    J Biosci, 2015 Mar;40(1):41-51.
    PMID: 25740140
    Epstein-Barr virus (EBV)-encoded BARF1 (BamH1-A Rightward Frame-1) is expressed in EBV-positive malignancies such as nasopharyngeal carcinoma, EBV-associated gastric cancer, B-cell lymphoma and nasal NK/T-cell lymphoma, and has been shown to have an important role in oncogenesis. However, the mechanism by which BARF1 elicits its biological effects is unclear. We investigated the effects of BARF1 silencing on cell proliferation and apoptosis in EBV-positive malignant cells. We observed that BARF1 silencing significantly inhibits cell proliferation and induces apoptosis-mediated cell death by collapsing the mitochondrial membrane potential in AG876 and Hone-Akata cells. BARF1 knockdown up-regulates the expression of pro-apoptotic proteins and downregulates the expression of anti-apoptotic proteins. In BARF1-down-regulated cells, the Bcl-2/BAX ratio is decreased. The caspase inhibitor z-VAD-fmk was found to rescue siBARF1-induced apoptosis in these cells. Immunoblot analysis showed significant increased levels of cleaved caspase 3 and caspase 9. We observed a significant increase in cytochrome c level as well as the formation of apoptosome complex in BARF1-silenced cells. In conclusion, siRNA-mediated BARF1 down-regulation induces caspase-dependent apoptosis via the mitochondrial pathway through modulation of Bcl-2/BAX ratio in AG876 and Hone-Akata cells. Targeting BARF1 using siRNA has the potential to be developed as a novel therapeutic strategy in the treatment of EBV-associated malignancies.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  11. Aminuddin A, Ng PY
    Front Pharmacol, 2016;7:244.
    PMID: 27570510 DOI: 10.3389/fphar.2016.00244
    Canonical Wnt signaling pathway, also known as Wnt/β-catenin signaling pathway, is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration, and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. Furthermore, the canonical Wnt signaling pathway has also been described as one of the critical signaling pathways for regulation of normal stem cells as well as cancer cells with stem cell-like features, termed cancer stem cells (CSC). In this review, we will briefly describe the basic mechanisms of Wnt signaling pathway and its crucial roles in the normal regulation of cellular processes as well as in the development of cancer. Next, we will highlight the roles of canonical Wnt signaling pathway in the regulation of CSC properties namely self-renewal, differentiation, metastasis, and drug resistance abilities, particularly in head and neck squamous cell carcinoma. Finally, we will examine the findings of several recent studies which explore druggable targets in the canonical Wnt signaling pathway which could be valuable to improve the treatment outcome for head and neck cancer.
    Matched MeSH terms: Cell Transformation, Neoplastic
  12. Yaacob HB, Tan PL, Ngeow WC
    J Oral Sci, 2002 Jun;44(2):65-71.
    PMID: 12227497
    The objective of this study was to determine the socio-demography (age, race and gender) of a group of Malaysian patients who were diagnosed as suffering from oral lichen planus (OLP). The occurrence of malignancy was also investigated. A total of 77 clinical and biopsy records of patients with OLP were studied. Females were affected more than males, with the female to male ratio being 2:1. Middle-aged Indian and Chinese females tend to be affected by OLP when compared with the rest of the population. Only 19 patients returned for further follow-up. One adult Indian female with a six-year history of lichenoid reaction showed the presence of malignancy.
    Matched MeSH terms: Cell Transformation, Neoplastic
  13. Misron NA, Looi LM, Nik Mustapha NR
    Asian Pac J Cancer Prev, 2015;16(4):1553-8.
    PMID: 25743830
    BACKGROUND: COX-2 has been shown to play an important role in the development of breast cancer and increased expression has been mooted as a poor prognostic factor. The purpose of this study was to investigate the relationship between COX-2 immunohistochemical expression and known predictive and prognostic factors in breast cancer in a routine diagnostic histopathology setting.

    MATERIALS AND METHODS: Formalin-fixed paraffin- embedded tumour tissue of 144 no special type (NST) invasive breast carcinomas histologically diagnosed between January 2009 and December 2012 in Hospital Sultanah Bahiyah, Alor Setar, Kedah were immunostained with COX-2 antibody. COX-2 overexpression was analysed against demographic data, hormone receptor status, HER2- neu overexpression, histological grade, tumour size and lymph node status.

    RESULTS: COX-2 was overexpressed in 108/144 (75%) tumours and was significantly more prevalent (87%) in hormone receptor-positive tumours. There was no correlation between COX-2 overexpression and HER2/neu status. Triple negative cancers had the lowest prevalence (46%) (p<0.05). A rising trend of COX-2 overexpression with increasing age was observed. There was a significant inverse relationship with tumour grade (p<0.05), prevalences being 94%, 83% and 66% in grades 1, 2 and 3 tumours, respectively. A higher prevalence of COX-2 overexpression in smaller size tumours was observed but this did not reach statistical significance. There was no relationship between COX-2 expression and lymph node status.

    CONCLUSIONS: This study did not support the generally held notion that COX-2 overexpression is linked to poor prognosis, rather supporting a role in tumorigenesis. Larger scale studies with outcome data and basic studies on cancer pathogenetic pathways will be required to cast further light on whether COX-2 inhibitors would have clinical utility in cancer prevention or blockage of cancer progression. In either setting, the pathological assessment for COX-2 overexpression in breast cancers would have an important role in the selection of cancer patients for personalized therapy with COX-2 inhibitors.

    Matched MeSH terms: Cell Transformation, Neoplastic/metabolism; Cell Transformation, Neoplastic/pathology*
  14. Zaini ZM, McParland H, Møller H, Husband K, Odell EW
    Sci Rep, 2018 10 26;8(1):15874.
    PMID: 30367100 DOI: 10.1038/s41598-018-34165-5
    The value of image cytometry DNA ploidy analysis and dysplasia grading to predict malignant transformation has been determined in oral lesions considered to be at 'high' risk on the basis of clinical information and biopsy result. 10-year follow up data for 259 sequential patients with oral lesions clinically at 'high' risk of malignant transformation were matched to cancer registry and local pathology database records of malignant outcomes, ploidy result and histological dysplasia grade. In multivariate analysis (n = 228 patients), 24 developed carcinoma and of these, 14 prior biopsy samples were aneuploid. Aneuploidy was a significant predictor (hazard ratio 7.92; 95% CI 3.45, 18.17) compared with diploidy (p 
    Matched MeSH terms: Cell Transformation, Neoplastic
  15. Murakami A, Ali AM, Mat-Salleh K, Koshimizu K, Ohigashi H
    Biosci Biotechnol Biochem, 2000 Jan;64(1):9-16.
    PMID: 10705442
    A total of 114 methanol extracts from 42 plant families of edible Malaysian plants were screened for their inhibitory activities toward tumor promoter 12-O-hexadecanoylphorbol-13-acetate (HPA)-induced Epstein-Barr virus (EBV) activation in Raji cells. By testing at a concentration of 200 micrograms/ml, 74% of the 114 extracts inhibited EBV activation by 30% or more. This rate is comparable to those observed in the previous tests on edible Thai (60%) and Indonesian (71%) plants, and, importantly, much higher than that (26%) observed for Japanese edible plants. Approximately half of the Malaysian plants did not taxonomically overlap those from the other three countries, suggesting that Malaysian plants, as well as Thai and Indonesian plants, are an exclusive source of effective chemopreventive agents. Further dilution experiments indicated an extract from the leaves of Piper betle L. (Piperaceae) to be one of the most promising species. The high potential of edible Southeast Asian plants for cancer chemoprevention is collectively discussed.
    Matched MeSH terms: Cell Transformation, Neoplastic/drug effects
  16. Sulaiman H, Hamid RA, Ting YL, Othman F
    J Cancer Res Ther, 2012 Jul-Sep;8(3):404-10.
    PMID: 23174723 DOI: 10.4103/0973-1482.103521
    CONTEXT: Ardisia crispa Thunb. A. DC (Myrsinaceae) or locally known as hen's eyes has been used in local folk medicine as a remedy in various illnesses. Previously, it has been reported to inhibit various inflammatory diseases. However, research done on this plant is still limited.
    AIMS: In the present study, the hexane fraction of the A. crispa root (ACRH) was evaluated on the peri-initiation and promotion phases of skin carcinogenesis.
    MATERIALS AND METHODS: This two-stage skin carcinogenesis was induced by a single topical application of 7,12-dimethylbenz(α)anthracene (DMBA) and promoted by repeated treatment with croton oil for 10 weeks in Imprinting Control Region (ICR) mice. Morphological observation would be conducted to measure tumor incidence, tumor burden, and tumor volume. Histological evaluation on the skin tissue would also be done.
    RESULTS: The carcinogen control group exhibited 66.67% of tumor incidence. Although, in the ACRH-treated groups, at 30 mg/kg, the mice showed only 10% of tumor incidence with a significant reduction (P < 0.05) in the values of tumor burden and tumor volume of 2.00 and 0.52 mm(3), respectively. Furthermore, the result was significantly lower than that of the carcinogen and curcumin control. At 100 mg/kg, ACRH showed a comparable result to carcinogen control. On the contrary, at 300 mg/kg, ACRH exhibited 100% tumor incidence and showed a significant elevated (P < 0.05) value of tumor burden (3.80) and tumor volume (14.67 ± 2.48 mm(3)).
    CONCLUSIONS: The present study thus demonstrates that the anti-tumor effect of the chemopreventive potential of ACRH is at a lower dosage (30 mg/kg bwt) in both the initiating and promotion period, yet it exhibits a promoting effect at a higher dosage (300 mg/kg bwt).
    Matched MeSH terms: Cell Transformation, Neoplastic/chemically induced; Cell Transformation, Neoplastic/drug effects
  17. Pabalan N, Jarjanazi H, Ozcelik H
    J Gastrointest Cancer, 2014 Sep;45(3):334-41.
    PMID: 24756832 DOI: 10.1007/s12029-014-9610-2
    BACKGROUND: Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls.

    METHODS: We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome.

    RESULTS: The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) 

    Matched MeSH terms: Cell Transformation, Neoplastic/drug effects
  18. Khan S, Zakariah M, Rolfo C, Robrecht L, Palaniappan S
    Oncotarget, 2017 May 09;8(19):30830-30843.
    PMID: 27027344 DOI: 10.18632/oncotarget.8306
    Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Matched MeSH terms: Cell Transformation, Neoplastic
  19. Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, et al.
    J Tissue Eng Regen Med, 2017 08;11(8):2217-2226.
    PMID: 26756982 DOI: 10.1002/term.2120
    Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Cell Transformation, Neoplastic*
  20. Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, et al.
    Biomark Insights, 2014;9:77-84.
    PMID: 25232277 DOI: 10.4137/BMI.S16553
    FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
    Matched MeSH terms: Cell Transformation, Neoplastic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links