METHODS AND RESULT: The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis.
CONCLUSION: A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.
MATERIALS AND METHODS: The flexural strength and flexural modulus of three OPEFB fiber-reinforced PMMA were compared with a conventional and a commercially available reinforced PMMA. The three test groups included OPEFB fibers of 0.5 mm thickness, 2.0 mm thickness, and OPEFB cellulose.
RESULTS: All test group specimens demonstrated improved flexural strength and flexural modulus over conventional PMMA. Reinforcement with OPEFB cellulose showed the highest mean flexural strength and flexural modulus, which were statistically significant when compared to the conventional and commercially reinforced PMMA used in this study. OPEFB fiber in the form of cellulose and 0.5 mm thickness fiber significantly improved flexural strength and flexural modulus of conventional PMMA resin. Further investigation on the properties of PMMA reinforced with OPEFB cellulose is warranted.
CONCLUSIONS: Natural OPEFB fibers, especially OPEFB in cellulose form, can be considered a viable alternative to existing commercially available synthetic fiber reinforced PMMA resin.