Displaying publications 41 - 60 of 277 in total

Abstract:
Sort:
  1. N Amirrah I, Mohd Razip Wee MF, Tabata Y, Bt Hj Idrus R, Nordin A, Fauzi MB
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32972012 DOI: 10.3390/polym12092168
    Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.
    Matched MeSH terms: Collagen
  2. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Collagen Type I
  3. Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933133 DOI: 10.3390/polym12092081
    Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
    Matched MeSH terms: Collagen
  4. de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCM
    Restor Dent Endod, 2020 Aug;45(3):e31.
    PMID: 32839712 DOI: 10.5395/rde.2020.45.e31
    Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were "matrix metalloproteinases", "collagen", and "dentin" and "hybrid layer". MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
    Matched MeSH terms: Collagen
  5. Naomi R, Ratanavaraporn J, Fauzi MB
    Materials (Basel), 2020 Jul 10;13(14).
    PMID: 32664418 DOI: 10.3390/ma13143097
    The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
    Matched MeSH terms: Collagen
  6. Zhang Y, Lee SH, Wang C, Gao Y, Li J, Xu W
    Jpn J Clin Oncol, 2020 Jun 24.
    PMID: 32579167 DOI: 10.1093/jjco/hyaa089
    BACKGROUND: Patient-derived xenograft model is a powerful and promising tool for drug discovery and cancer biology studies. The application of previous metastatic colorectal cancer models has been greatly limited by its low success rate and long time to develop metastasis. Therefore, in this study, we aim to describe an optimized protocol for faster establishment of colorectal cancer metastatic patient-derived xenograft mouse models.

    METHODS: Smaller micro tissues (˂150 μm in diameter) mixed with Matrigel were engrafted subcutaneously into NSG mice to generate the passage 1 (P1) patient-derived xenograft. The micro tumours from P1 patient-derived xenograft were then excised and orthotopically xenografted into another batch of NSG mice to generate a metastatic colorectal cancer patient-derived xenograft, P2. Haematoxylin and eosin and immunohistochemistry staining were performed to compare the characters between patient-derived xenograft tumours and primary tumours.

    RESULTS: About 16 out of 18 P1 xenograft models successfully grew a tumour for 50.8 ± 5.1 days (success rate 89.9%). Six out of eight P1 xenograft models originating from metastatic patients successfully grew tumours in the colon and metastasized to liver or lung in the NSG recipients for 60.9 ± 4.5 days (success rate 75%). Histological examination of both P1 and P2 xenografts closely resembled the histological architecture of the original patients' tumours. Immunohistochemical analysis revealed similar biomarker expression levels, including CDH17, Ki-67, active β-catenin, Ki-67 and α smooth muscle actin when compared with the original patients' tumours. The stromal components that support the growth of patient-derived xenograft tumours were of murine origin.

    CONCLUSIONS: Metastatic patient-derived xenograft mouse model could be established with shorter time and higher success rate. Although the patient-derived xenograft tumours were supported by the stromal cells of murine origin, they retained the dominant characters of the original patient tumours.

    Matched MeSH terms: Collagen
  7. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
    Matched MeSH terms: Collagen/metabolism
  8. Mohd Sobri SN, Abdul Sani SF, Sabtu SN, Looi LM, Chiew SF, Pathmanathan D, et al.
    Sci Rep, 2020 02 06;10(1):1997.
    PMID: 32029810 DOI: 10.1038/s41598-020-58932-5
    At the supramolecular level, the proliferation of invasive ductal carcinoma through breast tissue is beyond the range of standard histopathology identification. Using synchrotron small angle x-ray scattering (SAXS) techniques, determining nanometer scale structural changes in breast tissue has been demonstrated to allow discrimination between different tissue types. From a total of 22 patients undergoing symptomatic investigations, different category breast tissue samples were obtained in use of surgically removed tissue, including non-lesional, benign and malignant tumour. Structural components of the tissues were examined at momentum transfer values between q = 0.2 nm-1 and 1.5 nm-1. From the SAXS patterns, axial d-spacing and diffuse scattering intensity were observed to provide the greatest discrimination between the various tissue types, specifically in regard to the epithelial mesenchymal transition (EMT) structural component in malignant tissue. In non-lesional tissue the axial period of collagen is within the range 63.6-63.7 nm (formalin fixed paraffin embedded (FFPE) dewaxed) and 63.4 (formalin fixed), being 0.9 nm smaller than in EMT cancer-invaded regions. The overall intensity of scattering from cancerous regions is a degree of magnitude greater in cancer-invaded regions. Present work has found that the d-spacing of the EMT positive breast cancer tissue (FFPE (dewaxed)) is within the range 64.5-64.7 nm corresponding to the 9th and 10th order peaks. Of particular note in regard to formalin fixation of samples is that no alteration is observed to occur in the relative differences in collagen d-spacing between non-lesional and malignant tissues. This is a matter of great importance given that preserved-sample and also retrospective study of samples is greatly facilitated by formalin fixation. Present results indicate that as aids in tissue diagnosis SAXS is capable of distinguishing areas of invasion by disease as well as delivering further information at the supramolecular level.
    Matched MeSH terms: Collagen/ultrastructure
  9. Tay CG, Fong CY, Li L, Ganesan V, Teh CM, Gan CS, et al.
    J Clin Neurosci, 2020 Feb;72:468-471.
    PMID: 31831253 DOI: 10.1016/j.jocn.2019.12.007
    Congenital myasthenic syndrome (CMS) is a heterogeneous group of inherited disorder which does not associate with anti-acetylcholine receptor (AChR) antibody. The presence of AChR autoantibody is pathogenic and highly sensitive and specific for autoimmune myasthenia gravis (MG). We describe 2 children from unrelated families who presented with hypotonia, ptosis and fatigability in early infancy with anti-AChR antibodies detected via ELISA on 2 separate occasions in the sera. Both were treated as refractory autoimmune MG due to poor clinical response to acetylcholinesterase inhibitor and immunotherapy. In view of the atypical clinical features, genetic studies of CMS were performed and both were confirmed to have novel pathogenic mutations in the COLQ gene. To the best of our knowledge, the presence of anti-AChR antibody in COLQ-related CMS has never been reported in the literature. The clinical presentation of early onset phenotype, and refractoriness to acetylcholinesterase inhibitor and immunotherapy should prompt CMS as a differential diagnosis.
    Matched MeSH terms: Collagen/genetics*; Collagen/therapeutic use
  10. Tan HY, Tan SL, Teo SH, Roebuck MM, Frostick SP, Kamarul T
    PeerJ, 2020;8:e8740.
    PMID: 32587790 DOI: 10.7717/peerj.8740
    Background: Type 2 diabetes mellitus (T2DM) had been reported to be associated with tendinopathy. However, the underlying mechanisms of diabetic tendinopathy still remain largely to be discovered. The purpose of this study was to develop insulin resistance (IR) model on primary human tenocytes (hTeno) culture with tumour necrosis factor-alpha (TNF-α) treatment to study tenocytes homeostasis as an implication for diabetic tendinopathy.

    Methods: hTenowere isolated from human hamstring tendon. Presence of insulin receptor beta (INSR-β) on normal tendon tissues and the hTeno monolayer culture were analyzed by immunofluorescence staining. The presence of Glucose Transporter Type 1 (GLUT1) and Glucose Transporter Type 4 (GLUT4) on the hTeno monolayer culture were also analyzed by immunofluorescence staining. Primary hTeno were treated with 0.008, 0.08, 0.8 and 8.0 µM of TNF-α, with and without insulin supplement. Outcome measures include 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assay to determine the glucose uptake activity; colourimetric total collagen assay to quantify the total collagen expression levels; COL-I ELISA assay to measure the COL-I expression levels and real-time qPCR to analyze the mRNA gene expressions levels of Scleraxis (SCX), Mohawk (MKX), type I collagen (COL1A1), type III collagen (COL3A1), matrix metalloproteinases (MMP)-9 and MMP-13 in hTeno when treated with TNF-α. Apoptosis assay for hTeno induced with TNF-α was conducted using Annexin-V FITC flow cytometry analysis.

    Results: Immunofluorescence imaging showed the presence of INSR-β on the hTeno in the human Achilles tendon tissues and in the hTeno in monolayer culture. GLUT1 and GLUT4 were both positively expressed in the hTeno. TNF-α significantly reduced the insulin-mediated 2-NBDG uptake in all the tested concentrations, especially at 0.008 µM. Total collagen expression levels and COL-I expression levels in hTeno were also significantly reduced in hTeno treated with 0.008 µM of TNF-α. The SCX, MKX and COL1A1 mRNA expression levels were significantly downregulated in all TNF-α treated hTeno, whereas the COL3A1, MMP-9 and MMP-13 were significantly upregulated in the TNF-α treated cells. TNF-α progressively increased the apoptotic cells at 48 and 72 h.

    Conclusion: At 0.008 µM of TNF-α, an IR condition was induced in hTeno, supported with the significant reduction in glucose uptake, as well as significantly reduced total collagen, specifically COL-I expression levels, downregulation of candidate tenogenic markers genes (SCX and MKX), and upregulation of ECM catabolic genes (MMP-9 and MMP-13). Development of novel IR model in hTeno provides an insight on how tendon homeostasis could be affected and can be used as a tool for further discovering the effects on downstream molecular pathways, as the implication for diabetic tendinopathy.

    Matched MeSH terms: Collagen Type I; Collagen Type III
  11. Guo HF, Mohd Ali R, Abd Hamid R, Chang SK, Zainal Z, Khaza'ai H
    Int J Burns Trauma, 2020;10(5):218-224.
    PMID: 33224609
    Burns are injuries on the skin or other tissues. Burns are divided into superficial, partial, and full-thickness, characterized by the depth of the affected tissues. Histological analysis is critical to assess the burn wound healing process. Thus, a systematic evaluation system is imperative for burn research. In the present study, a total of thirty Sprague-Dawley rats were randomly divided into five groups. Deep partial-thickness burn wound was induced on the dorsal part of the rats. Six animals from each group were sacrificed on the 3rd, 7th, 11th, 14th and 21st day post-burn, respectively. Half of the wound tissue was immediately fixed in buffered neutral formalin for hematoxylin & eosin staining. The healing of the epidermis was evaluated with scores ranging from 0 to 7 based on the state of crust on wound surface, the degree of epithelialization as well as the formation of rete ridges. Meanwhile, healing of the dermis was also evaluated with scores ranging from 0 to 7 according to the proportion of adipose cells, inflammatory cells and fibroblasts, the state of collagen deposition as well as the formation of hair follicles. Furthermore, temporal changes of histological score of epidermis and dermis in the skin tissue with deep partial-thickness burn was evaluated. In conclusion, a new comprehensive system for assessing microscopic changes in the healing process of deep partial-thickness burn wound in hematoxylin & eosin staining slides was established, which simplified the scoring process and helped to obtain reproducible and accurate results in the burn study.
    Matched MeSH terms: Collagen
  12. Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S
    PLoS One, 2020;15(9):e0238449.
    PMID: 32886713 DOI: 10.1371/journal.pone.0238449
    Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
    Matched MeSH terms: Collagen Type II/metabolism
  13. Nam HY, Murali MR, Ahmad RE, Pingguan-Murphy B, Raghavendran HRB, Kamarul T
    Stem Cells Int, 2020;2020:5385960.
    PMID: 32908542 DOI: 10.1155/2020/5385960
    It has been suggested that mechanical strain may elicit cell differentiation in adult somatic cells through activation of epithelial sodium channels (ENaC). However, such phenomenon has not been previously demonstrated in mesenchymal stromal cells (MSCs). The present study was thus conducted to investigate the role of ENaC in human bone marrow-derived MSCs (hMSCs) tenogenic differentiation during uniaxial tensile loading. Passaged-2 hMSCs were seeded onto silicone chambers coated with collagen I and subjected to stretching at 1 Hz frequency and 8% strain for 6, 24, 48, and 72 hours. Analyses at these time points included cell morphology and alignment observation, immunocytochemistry and immunofluorescence staining (collagen I, collagen III, fibronectin, and N-cadherin), and gene expression (ENaC subunits, and tenogenic markers). Unstrained cells at similar time points served as the control group. To demonstrate the involvement of ENaC in the differentiation process, an ENaC blocker (benzamil) was used and the results were compared to the noninhibited hMSCs. ENaC subunits' (α, β, γ, and δ) expression was observed in hMSCs, although only α subunit was significantly increased during stretching. An increase in tenogenic genes' (collagen1, collagen3, decorin, tenascin-c, scleraxis, and tenomodulin) and proteins' (collagen I, collagen III, fibronectin, and N-cadherin) expression suggests that hMSCs underwent tenogenic differentiation when subjected to uniaxial loading. Inhibition of ENaC function resulted in decreased expression of these markers, thereby suggesting that ENaC plays a vital role in tenogenic differentiation of hMSCs during mechanical loading.
    Matched MeSH terms: Collagen; Collagen Type I
  14. Kwan SH, Abdul Aziz NHK, Ismail MN
    Protein Pept Lett, 2020;27(1):48-59.
    PMID: 31362651 DOI: 10.2174/0929866526666190730121711
    BACKGROUND: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

    OBJECTIVE: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

    MATERIAL AND METHODS: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

    RESULTS: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

    CONCLUSIONS: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

    Matched MeSH terms: Collagen/chemistry
  15. Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, et al.
    Biomed Res Int, 2020;2020:8857428.
    PMID: 33381591 DOI: 10.1155/2020/8857428
    Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
    Matched MeSH terms: Collagen
  16. Rapi HS, Che Soh N', Mohd Azam NS, Maulidiani M, Assaw S, Haron MN, et al.
    PMID: 33299445 DOI: 10.1155/2020/1408926
    Wound healing is a well-coordinated process that restores skin integrity upon injury. However, some wound treatment poses harmful effects on the skin, which delay the normal wound healing process. Marphysa moribidii, a marine baitworm or polychaete, represents unique ability to regenerate posterior segment after injury, which may be beneficial in the wound healing treatment. The effectiveness of the polychaete as wound healing treatment was discovered through skin irritation, microbial testing, animal wound model, and chemical identifications. Three polychaete extracts (PE) emulsifying ointment (0.1%, 0.5%, and 1.0%) were topically applied to the full thickness wound model once daily for 14 days. Interestingly, PE 1.0% revealed the most rapid wound healing effects as compared to other treatments, including gamat (sea cucumber) oil (15% w/v) and acriflavine (0.1% w/v). Histopathological analysis using Masson's trichrome staining further confirms that PE treated wound exhibited minimal scar, high collagen deposition, and the emergence of neovascularisation. The extract also displayed a minimum inhibitory concentration (MIC) of 0.4 g/ml against Escherichia coli and absence of skin irritation, infectious bacteria, and heavy metals from the extract. Moreover, chemical compounds such as alkaloid, flavonoid, amino acids, and organic acid were detected in M. moribidii extracts, which could contribute to wound healing activity. In conclusion, this study further justifies the beneficial use of polychaete in treating wound healing and could be developed as a novel bioactive agent in nutraceuticals and pharmaceutical drugs.
    Matched MeSH terms: Collagen
  17. Che Soh N', Rapi HS, Mohd Azam NS, Santhanam RK, Assaw S, Haron MN, et al.
    PMID: 33488747 DOI: 10.1155/2020/6688084
    Diopatra claparedii which is colloquially known as Ruat Sarung can be found along the west coast of Peninsular Malaysia. The species has a unique ability to regenerate anterior and posterior segments upon self-amputation or injury, thus having potential as a wound healing promoter. In this study, the wound healing potential of D. claparedii aqueous extract on acute wound model in rats was revealed for the first time. Various concentrations (0.1%, 0.5%, and 1.0% w/w) of D. claparedii ointment were formulated and tested on Sprague Dawley rats through topical application on full-thickness skin wounds for 14 days. The wound healing effects were investigated via behaviour observation, wound contraction, and histopathological analysis. Quality assessment was performed via skin irritation test, microbial contamination test (MCT), and heavy metal detection. The study also included test for antibacterial activities and detection of bioactive compounds in D. claparedii. One percent of D. claparedii ointment showed rapid wound healing potential with good soothing effects and more collagen deposition in comparison to the commercial wound healing ointments such as acriflavine (0.1% w/v) and traditional ointment gamat (sea cucumber extract) (15.0% w/v). No local skin irritation, microbial contamination, and insignificant concentration of heavy metals were observed, which indicate its safe application. Moreover, the aqueous extract of D. claparedii exhibited antibacterial activities against Escherichia coli and Pseudomonas aeruginosa with minimum inhibitory concentration (MIC) value at 0.4 g/ml. 1H NMR analysis of the aqueous extract of D. claparedii revealed some metabolites that might be responsible for its wound healing properties such as amino acids, halogenated aromatics, organic acids, vitamins, and others. Altogether, these results suggested that the aqueous extract of D. claparedii could be utilised as an alternative natural wound healing promoter.
    Matched MeSH terms: Collagen
  18. Md Yusof A, Abd Ghafar N, Kamarudin TA, Chua KH, Azmi MF, Ng SL, et al.
    Cytotechnology, 2019 Dec;71(6):1121-1135.
    PMID: 31606844 DOI: 10.1007/s10616-019-00349-8
    This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.
    Matched MeSH terms: Collagen Type I
  19. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

    Matched MeSH terms: Collagen Type I
  20. Başak K, Günhan Ö, Akbulut S, Aydin S
    Malays J Pathol, 2019 Dec;41(3):345-350.
    PMID: 31901920
    INTRODUCTION: Congenital salivary gland anlage tumour of the nasopharynx is a lesion which usually presents with nasal and upper respiratory tract obstruction in the neonatal period. Timely diagnosis is essential to prevent the occurrence of respiratory complications in later childhood.

    CASE REPORT: We present a 8-year-old boy complaining from difficulty in breathing and breastfeeding in the neonatal period due to an adenoid-like nasopharyngeal mass. Histological examination revealed solid and cystic squamous nests and numerous duct-like structures within collagenised stroma. Both epithelial and myoepithelial differentiation were noted in the tubular component.

    DISCUSSION: A review of the clinical and histopathological features of published cases revealed that ancient lesions showed more prominent and complex epithelial component and more collagen rich stroma. We would like to suggest the possibility of salivary gland anlage tumour to be considered in the differential diagnosis of neonatal respiratory distress cases.

    Matched MeSH terms: Collagen/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links