Displaying publications 41 - 60 of 116 in total

Abstract:
Sort:
  1. Nurfarahin AH, Mohamed MS, Phang LY
    Molecules, 2018 May 01;23(5).
    PMID: 29723959 DOI: 10.3390/molecules23051049
    Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
    Matched MeSH terms: Culture Media/chemistry*
  2. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Culture Media/chemistry
  3. Hamood Altowayti WA, Almoalemi H, Shahir S, Othman N
    Ecotoxicol Environ Saf, 2020 Dec 01;205:111267.
    PMID: 32992213 DOI: 10.1016/j.ecoenv.2020.111267
    Arsenic is a common contaminant in gold mine soil and tailings. Microbes present an opportunity for bio-treatment of arsenic, since it is a sustainable and cost-effective approach to remove arsenic from water. However, the development of existing bio-treatment approaches depends on isolation of arsenic-resistant microbes from arsenic contaminated samples. Microbial cultures are commonly used in bio-treatment; however, it is not established whether the structure of the cultured isolates resembles the native microbial community from arsenic-contaminated soil. In this milieu, a culture-independent approach using Illumina sequencing technology was used to profile the microbial community in situ. This was coupled with a culture-dependent technique, that is, isolation using two different growth media, to analyse the microbial population in arsenic laden tailing dam sludge based on the culture-independent sequencing approach, 4 phyla and 8 genera were identified in a sample from the arsenic-rich gold mine. Firmicutes (92.23%) was the dominant phylum, followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes (1.49%). The identified genera included Staphylococcus (89.8%), Pseudomonas (1.25), Corynebacterium (0.82), Prevotella (0.54%), Megamonas (0.38%) and Sphingomonas (0.36%). The Shannon index value (3.05) and Simpson index value (0.1661) indicated low diversity in arsenic laden tailing. The culture dependent method exposed significant similarities with culture independent methods at the phylum level with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes was the dominant phylum whereas, at the genus level, only Pseudomonas was presented by both methods. It showed high similarities between culture independent and dependent methods at the phylum level and large differences at the genus level, highlighting the complementarity between the two methods for identification of the native population bacteria in arsenic-rich mine. As a result, the present study can be a resource on microbes for bio-treatment of arsenic in mining waste.
    Matched MeSH terms: Culture Media/chemistry
  4. Zuha RM, Razak TA, Ahmad NW, Omar B
    Parasitol Res, 2012 Nov;111(5):2179-87.
    PMID: 22886544 DOI: 10.1007/s00436-012-3070-z
    In forensic entomology, breeding of fly larvae in a controlled laboratory environment using animal tissue is a common technique to obtain insect developmental time for the estimation of postmortem interval. Previous studies on growth media are mostly on the effect of different diets on fly development. However, the interaction effects between temperature and food type used have not been explored. The objective of this study was to compare the use of cow's liver agar and raw liver on the development of a forensically important fly, Megaselia scalaris (Loew). This study also determined the interaction between different temperatures and different food types on the growth of this species. A total of 100 M. scalaris eggs were transferred into each of the two media mentioned above. Liver agar was prepared by adding dried ground liver into nutrient agar, whilst raw liver was naturally prepared from the same animal source. This experiment was conducted at 27, 30 and 33 °C in an incubator in a continuously dark condition. Length and weight of larvae, puparia and adult samples were determined. Total developmental times for larvae feeding on liver agar at each temperature were approximately 7-15 h slower than those feeding on raw liver. Survival rates were almost equal in both diets but were lower at 33 °C. Mean larva length in both diets did not differ significantly at all temperatures, but larvae feeding on liver agar had lower mean weight values than those in raw liver at 30 and 33 °C. The effect of temperature was significant in female puparia weight and male adult weight whereas the effect of diet types was significant in both male and female puparia size and weight. Interaction effects of temperature and food type on M. scalaris puparium size and adult weight were significant, indicating that puparium size and adult weight depended on both food type and temperature. This experiment highlighted the use of cow's liver agar as an alternative diet to breed M. scalaris in the laboratory and the importance of considering the interaction effect between temperatures and food types when deciding the most suitable medium in fly larva rearing.
    Matched MeSH terms: Culture Media/chemistry
  5. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ, Yusoff AR, Salim MR, et al.
    Folia Microbiol (Praha), 2013 Sep;58(5):385-91.
    PMID: 23307571 DOI: 10.1007/s12223-013-0221-2
    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.
    Matched MeSH terms: Culture Media/chemistry
  6. Tay ST, Lotfalikhani A, Sabet NS, Ponnampalavanar S, Sulaiman S, Na SL, et al.
    Mycopathologia, 2014 Oct;178(3-4):307-14.
    PMID: 25022264 DOI: 10.1007/s11046-014-9778-9
    BACKGROUND: Candida nivariensis and C. bracarensis have been recently identified as emerging yeast pathogens which are phenotypically indistinguishable from C. glabrata. However, there is little data on the prevalence and antifungal susceptibilities of these species.

    OBJECTIVE: This study investigated the occurrence of C. nivariensis and C. bracarensis in a culture collection of 185 C. glabrata isolates at a Malaysian teaching hospital.

    METHODS: C. nivariensis was discriminated from C. glabrata using a PCR assay as described by Enache-Angoulvant et al. (J Clin Microbiol 49:3375-9, 2011). The identity of the isolates was confirmed by sequence analysis of the D1D2 domain and internal transcribed spacer region of the yeasts. The isolates were cultured on Chromogenic CHROMagar Candida (®) agar (Difco, USA), and their biochemical and enzymic profiles were determined. Antifungal susceptibilities of the isolates against amphotericin B, fluconazole, voriconazole and caspofungin were determined using E tests. Clotrimazole MICs were determined using a microbroth dilution method.

    RESULTS: There was a low prevalence (1.1 %) of C. nivariensis in our culture collection of C. glabrata. C. nivariensis was isolated from a blood culture and vaginal swab of two patients. C. nivariensis grew as white colonies on Chromogenic agar and demonstrated few positive reactions using biochemical tests. Enzymatic profiles of the C. nivariensis isolates were similar to that of C. glabrata. The isolates were susceptible to amphotericin B, fluconazole, voriconazole and caspofungin. Clotrimazole resistance is suspected in one isolate.

    CONCLUSION: This study reports for the first time the emergence of C. nivariensis in our clinical setting.

    Matched MeSH terms: Culture Media/chemistry
  7. Madhavan P, Jamal F, Chong PP, Ng KP
    Trop Biomed, 2011 Aug;28(2):269-74.
    PMID: 22041745
    The objective of our study was to study the effectiveness of CHROMagar Candida™ as the primary identification method for various clinical Candida isolates, other than the three suggested species by the manufacturer. We studied 34 clinical isolates which were isolated from patients in a local teaching hospital and 7 ATCC strains. These strains were first cultured in Sabouraud dextrose broth (SDB) for 36 hours at 35ºC, then on CHROMagar plates at 30ºC, 35ºC and 37ºC. The sensitivity of this agar to identify Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, Candida rugosa, Candida krusei and Candida parapsilosis ranged between 25 and 100% at 30ºC, 14% and 100% at 35ºC, 56% and 100% at 37ºC. The specificity of this agar was 100% at 30ºC, between 97% and 100% at 35ºC, 92% and 100% at 37ºC. The efficiency of this agar ranged between 88 and 100% at 30ºC, 83% and 100% at 35ºC, 88% and 100% at 37ºC. Each species also gave rise to a variety of colony colours ranging from pink to green to blue of different colony characteristics. Therefore, the chromogenic agar was found to be useful in our study for identifying clinical Candida isolates.
    Matched MeSH terms: Culture Media/chemistry*
  8. Philip N, Garba B, Neela VK
    Appl Microbiol Biotechnol, 2018 Jul;102(13):5427-5435.
    PMID: 29736823 DOI: 10.1007/s00253-018-9047-9
    Preservation of leptospiral cultures is tantamount to success in leptospiral diagnostics, research, and development of preventive strategies. Each Leptospira isolate has imperative value not only in disease diagnosis but also in epidemiology, virulence, pathogenesis, and drug development studies. As the number of circulating leptospires is continuously increasing and congruent with the importance to retain their original characteristics and properties, an efficient long-term preservation is critically needed to be well-established. However, the preservation of Leptospira is currently characterized by difficulties and conflicting results mainly due to the biological nature of this organism. Hence, this review seeks to describe the efforts in developing efficient preservation methods, to discover the challenges in preserving this organism and to identify the factors that can contribute to an effective long-term preservation of Leptospira. Through the enlightenment of the previous studies, a potentially effective method has been suggested. The article also attempts to evaluate novel strategies used in other industrial and biotechnological preservation efforts and consider their potential application to the conservation of Leptospira spp.
    Matched MeSH terms: Culture Media/chemistry
  9. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Culture Media/chemistry
  10. Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N
    Lett Appl Microbiol, 2021 May;72(5):610-618.
    PMID: 33525052 DOI: 10.1111/lam.13455
    Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
    Matched MeSH terms: Culture Media/chemistry
  11. Ridzlan FR, Bahaman AR, Khairani-Bejo S, Mutalib AR
    Trop Biomed, 2010 Dec;27(3):632-8.
    PMID: 21399605 MyJurnal
    Leptospirosis is recognized as one of the important zoonotic diseases in the world including Malaysia. A total of 145 soil and water samples were collected from selected National Service Training Centres (NSTC) in Kelantan and Terengganu. The samples were inoculated into modified semisolid Ellinghausen McCullough Johnson Harris (EMJH) medium, incubated at room temperature for 1 month and examined under the dark-field microscope. Positive growth of the leptospiral isolates were then confirmed with 8-Azaguanine Test, Polymerase Chain Reaction (PCR) assay and Microscopic Agglutination Test (MAT). Fifteen cultures (10.34%) exhibited positive growths which were seen under dark field microscope whilst only 20% (3/15) were confirmed as pathogenic species. based on 8-Azaguanine Test and PCR. Serological identification of the isolates with MAT showed that hebdomadis was the dominant serovar in Terengganu. Pathogenic leptospires can be detected in Malaysian environment and this has the potential to cause an outbreak. Therefore, precautionary steps against leptospirosis should be taken by camp authorities to ensure the safety of trainees.
    Matched MeSH terms: Culture Media/chemistry
  12. Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731437 DOI: 10.3390/molecules25153416
    The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
    Matched MeSH terms: Culture Media/chemistry
  13. Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M
    Med Mycol, 2016 Nov 01;54(8):856-64.
    PMID: 27354487 DOI: 10.1093/mmy/myw042
    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.
    Matched MeSH terms: Culture Media/chemistry*
  14. Isa NK, Mat Don M
    Prep Biochem Biotechnol, 2014;44(6):572-85.
    PMID: 24499362 DOI: 10.1080/10826068.2013.844707
    The culture conditions for gibberellic acid (GA3) production by the fungus Penicillium variable (P. variable) was optimized using a statistical tool, response surface methodology (RSM). Interactions of culture conditions and optimization of the system were studied using Box-Behnken design (BBD) with three levels of three variables in a batch flask reactor. Experimentation showed that the model developed based on RSM and BBD had predicted GA3 production with R(2) = 0.987. The predicted GA3 production was optimum (31.57 mg GA3/kg substrate) when the culture conditions were at 7 days of incubation period, 21% v/w of inoculum size, and 2% v/w of olive oil concentration as a natural precursor. The results indicated that RSM and BBD methods were effective for optimizing the culture conditions of GA3 production by P. variable mycelia.
    Matched MeSH terms: Culture Media/chemistry*
  15. Sudheer S, Alzorqi I, Ali A, Cheng PG, Siddiqui Y, Manickam S
    Int J Med Mushrooms, 2018;20(1):89-100.
    PMID: 29604916 DOI: 10.1615/IntJMedMushrooms.2017024588
    This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
    Matched MeSH terms: Culture Media/chemistry
  16. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY
    Benef Microbes, 2010 Jun;1(2):149-54.
    PMID: 21831754 DOI: 10.3920/BM2009.0035
    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces.
    Matched MeSH terms: Culture Media/chemistry
  17. Chen L, Wang Z, Zhang B, Ge M, Ng H, Niu Y, et al.
    Carbohydr Polym, 2019 Feb 01;205:271-278.
    PMID: 30446105 DOI: 10.1016/j.carbpol.2018.10.070
    Carbon and nitrogen sources in culture medium of Antrodia cinnamomea were optimized to eliminate the interference of exterior macromolecules on exopolysaccharide (EPS) yield by submerged fermentation. The results suggested that culture medium containing 50 g/L of glucose and 20 g/L of yeast extract as the optimal carbon and nitrogen sources could produce 1.03 g/L of exopolysaccharides. After purification, two heteropolysaccharides (AC-EPS1 and AC-EPS2) were obtained and characterized to provide the basic structure information. As the main component of the produced EPS, AC-EPS2 (accounting for 89.63%) was mainly composed of galactose (87.42%) with Mw (molecular weight) and R.M.S. (root-mean-square) radius of 1.18 × 105 g/mol and 25.3 nm, respectively. Furthermore, the spherical and flexible chain morphologies of EPS were observed in different solvents by TEM. The structural and morphological information of purified EPS were significant for further study on their structure-activity relationship and related applications.
    Matched MeSH terms: Culture Media/chemistry
  18. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):947-59.
    PMID: 22580314
    This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular beta-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.
    Matched MeSH terms: Culture Media/chemistry*
  19. Darah I, Sumathi G, Jain K, Lim SH
    Bioprocess Biosyst Eng, 2011 Sep;34(7):795-801.
    PMID: 21347668 DOI: 10.1007/s00449-011-0529-8
    The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.
    Matched MeSH terms: Culture Media/chemistry
  20. Tan IS, Lam MK, Lee KT
    Carbohydr Polym, 2013 Apr 15;94(1):561-6.
    PMID: 23544575 DOI: 10.1016/j.carbpol.2013.01.042
    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass.
    Matched MeSH terms: Culture Media/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links