Displaying publications 41 - 60 of 262 in total

Abstract:
Sort:
  1. Naim DM, Nor SAM, Mahboob S
    Saudi J Biol Sci, 2020 Feb;27(2):643-652.
    PMID: 32210683 DOI: 10.1016/j.sjbs.2019.11.030
    This study utilized genetic and morphometric approaches to assess the molecular and morphometric differentiation among commercially important species of mud crab. Molecular investigations were derived from 542 bp mitochondrial DNA COI on 249 individuals within genus Scylla from nine states in Malaysia represents four marine regions; South China Sea, Sulu Sea, Straits of Singapore and Straits of Malacca. Four specimens were obtained from Indonesia to give a robust analysis in this study. For species delimitation, Automatic Barcode Gap Discovery (ABGD) method on a web interface was employed. Analysis on phylogenetics was implemented utilizing Neighbour joining (NJ) and Maximum Parsimony (MP) methods. The inter- and intraspecies genetic distances (Ds ) was computed using Kimura 2-parameter distance and executed in MEGA version 5.05. All samples were genetically and morphologically identified and clustered into four distinct species. Among the species, S. olivacea was the most abundant (n = 111), on the other hand the occurrence of S. paramamosain in Malaysia was very low (n = 29). No single individual of S. serrata from Malaysia was recorded in this study. Both genetic distance and phylogenetic approaches exhibited a correlative monophyletic association among all specimens analysed. This present study is crucial as it reports the reassessment of all species within genus Scylla in Malaysia, eventually could be employed as a reference source for subsequent research mainly on mariculture and other conservation efforts for the species.
    Matched MeSH terms: DNA, Mitochondrial
  2. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Nijman V
    Folia Primatol., 2020;91(3):228-239.
    PMID: 31578029 DOI: 10.1159/000502093
    Great progress has been made in unravelling the evolutionary history of Asian colobines, largely through the use of dated molecular phylogenies based on multiple markers. The Presbytis langurs are a case in point, with more allopatric species being identified, recognition of Presbytis thomasi from Sumatra rather than P. potenziani from the Mentawai Islands as being the most basal species of the group, and the discovery that P. rubicunda from Borneo is nested among the Sumatran species and only made it to Borneo in the last 1.3 million years. Based on variation in mitochondrial d-loop, it has recently been argued that Malaysia's P. femoralis femoralis is actually P. neglectus neglectus. Unfortunately, despite being available, sequences from the type locality, Singapore, were excluded from the analysis, and none of the newly generated sequences was deposited in GenBank. I manually reconstructed these sequences, which allowed me to present a molecular phylogeny that includes 8 additional sequences from West Malaysia and Singapore. P. neglectus from Malaysia and P. femoralis from Singapore form one monophyletic clade, with minimal divergence. I conclude that recognition of P. neglectus is erroneous and the name is a junior synonym of P. femoralis. Colobine taxonomy and systematics have advanced, and continue to advance, mostly by considering evidence from a wide range of individuals, species and data sets (molecular, behavioural and morphological) rather than focusing on single molecular markers from 1 or 2 species from one small geographic area. For an orderly taxonomic debate where evidence can be evaluated and reinterpreted it is essential that newly generated sequences are deposited in public repositories.
    Matched MeSH terms: DNA, Mitochondrial
  4. Kongrit C, Markviriya D, Laithong P, Khudamrongsawat J
    Folia Primatol., 2020;91(1):1-14.
    PMID: 31593962 DOI: 10.1159/000500007
    Confiscated slow lorises (Nycticebus spp.) at Bangpra Water-Bird Breeding Center (BWBC) in Thailand provided an opportunity to demonstrate the application of noninvasive genetic approaches for species identification when morphology of the animals was ambiguous. The slow lorises at BWBC had been assigned to either N. bengalensis or N. pygmaeus, based on body size. However, the morphology of N. bengalensis is highly variable and overlaps with that of N. coucang (sensu stricto). Phylogenetic analysis of cytochrome b and d-loop mitochondrial regions placed all confiscated N. pygmaeus with the published sequences of N. pygmaeus and distinguished them from other Nycticebus. All other confiscated individuals formed a monophyletic clade, most individuals grouping with published N. bengalensis sequences from wild populations in Vietnam and distinct from Peninsular Malaysian and Sumatran N. coucang, Javan N. javanicus and Bornean N. menagensis. Six individuals within the N. bengalensis clade formed a separate subgroup that did not group with any reference material as indicated by phylogenetic and haplotype network analyses. Whether these trafficked individuals are undiscovered wild populations will require further investigation. Additional genetic studies of wild slow loris populations in different regions are therefore urgently required for reference to aid the protection and conservation of these threatened species.
    Matched MeSH terms: DNA, Mitochondrial/analysis
  5. Abdul Aziz Mohamed Yusoff, Wan Salihah Wan Abdullah, Alarmelu Nithya Ramanathan, Jafri Malin Abdullah, Zamzuri Idris
    MyJurnal
    Although the precise etiology of Glioblastoma multiforme (GBM, WHO grade IV) remains unknown, its progression
    is believed to be driven by the accumulation of multiple genetic alterations. Here, we report a case of a patient who
    developed GBM, and associated with dual alterations, particularly 4977-bp deletion in mtDNA (mtDNA4977) and
    p.Arg132His (R132H) mutation in IDH1. A 35-year old Malaysian woman patient who primary diagnosed with astrocytoma WHO grade I and subsequently after four years developed a GBM, was detected with a mtDNA4977. This
    deletion appears to be a sporadic mutation. Additionally, analysis of patient’s tumor tissue also found to harbor a heterozygous IDH1 R132H mutation. This represents the first case report of coexisting mtDNA4977 together with IDH1
    R132H mutation in a Malaysian patient of GBM. The findings of dual alterations could be of therapeutic benefit if
    these alterations were justified to be contributing to GBM growth and aggressiveness.
    Matched MeSH terms: DNA, Mitochondrial
  6. NURUL AZLIANA MOHD YASIN, NOORHANI SYAHIDA KASIM, TUN NURUL AIMI MAT JAAFAR, RUMEAIDA MAT PIAH, WAHIDAH MOHD ARSHAAD, SITI AZIZAH MOHD NOR, et al.
    MyJurnal
    Present study investigates the genetic diversity and genetic distribution of the longtail tuna Thunnus tonggol collected from east Malaysia (Borneo states of Sabah and Sarawak) based on mitochondrial DNA D-loop sequence analysis. 58 fish samples were obtained, specifically from Kota Kinabalu, KK (n = 22), Miri, MR (n=20) and Bintulu, BT (n = 17). DNA template was isolated using the salt extraction method. Final length of 404 base pair (bp) D-loop sequences revealed 52 haplotypes that comprise of 77 variable sites (38 of parsimony informative and 39 singleton). A total of 20 haplotypes were found in KK, 19 haplotypes in MR and 16 haplotypes in BT. Molecular diversity indices revealed high haplotype diversity and low nucleotide diversity in all populations; KK (h = 0.9913 ± 0.0165, π = 0.00239 ± 0.0127), MR (h = 0.9942 ± 0.0193, π = 0.0226 ± 0.0121) and BT (h = 0.9926 ± 0.0230, π = 0.0196 ± 0.0171). Population comparison pairwise FST show that KK and BT were significantly genetically differentiated. The result from this study will be beneficial for fisheries management and also to provide information on the population genetics of T. tonggol in East Malaysian waters.
    Matched MeSH terms: DNA, Mitochondrial
  7. Kodada J, Jäch MA, Freitag H, Čiamporová-Zaťovičová Z, Goffová K, Selnekovič D, et al.
    Zookeys, 2020;912:25-64.
    PMID: 32123499 DOI: 10.3897/zookeys.912.47796
    Ancyronyx clisterisp. nov. (Coleoptera, Elmidae) a new spider riffle beetle discovered from northern Borneo (Brunei; Sabah and Sarawak, Malaysia) and the larva of Ancyronyx sarawacensis Jäch are described. Illustrations of the habitus and diagnostic characters of the new species and the similar and highly variable A. sarawacensis are presented. Differences to closely related species, based on DNA barcodes and morphological characters, are discussed. Association of the larva and the imago of A. sarawacensis, and the occurrence of Ancyronyx procerus Jäch in Peninsular Malaysia and Sabah are confirmed by using COI mtDNA sequences.
    Matched MeSH terms: DNA, Mitochondrial
  8. Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, et al.
    PLoS One, 2020;15(5):e0233461.
    PMID: 32442190 DOI: 10.1371/journal.pone.0233461
    Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  9. Zhao K, Ishida Y, Green CE, Davidson AG, Sitam FAT, Donnelly CL, et al.
    J Hered, 2019 12 17;110(7):761-768.
    PMID: 31674643 DOI: 10.1093/jhered/esz058
    Illegal hunting is a major threat to the elephants of Africa, with more elephants killed by poachers than die from natural causes. DNA from tusks has been used to infer the source populations for confiscated ivory, relying on nuclear genetic markers. However, mitochondrial DNA (mtDNA) sequences can also provide information on the geographic origins of elephants due to female elephant philopatry. Here, we introduce the Loxodonta Localizer (LL; www.loxodontalocalizer.org), an interactive software tool that uses a database of mtDNA sequences compiled from previously published studies to provide information on the potential provenance of confiscated ivory. A 316 bp control region sequence, which can be readily generated from DNA extracted from ivory, is used as a query. The software generates a listing of haplotypes reported among 1917 African elephants in 24 range countries, sorted in order of similarity to the query sequence. The African locations from which haplotype sequences have been previously reported are shown on a map. We demonstrate examples of haplotypes reported from only a single locality or country, examine the utility of the program in identifying elephants from countries with varying degrees of sampling, and analyze batches of confiscated ivory. The LL allows for the source of confiscated ivory to be assessed within days, using widely available molecular methods that do not depend on a particular platform or laboratory. The program enables identification of potential regions or localities from which elephants are being poached, with capacity for rapid identification of populations newly or consistently targeted by poachers.
    Matched MeSH terms: DNA, Mitochondrial*
  10. Ishar SM, Parameswaran K, Masduki NS, Rus Din RD
    PMID: 31709874 DOI: 10.1080/24701394.2019.1687693
    DNA variations are alterations found in DNA sequence, occurring in both nuclear DNA and mitochondrial DNA. Variations might differ in individual following population, respectively. The aim of this study was to find variations in target sequence of mtDNA (16000-16200) to be used as marker in Malay and Chinese population. A total of 30 buccal swab samples from 20 Malay and 10 Chinese subjects were collected and preserved on FTA card. The FTA card that contained DNA sample was punched to be included into polymerase chain reaction mixture. Amplification was carried out and the products were sequenced. Sequence variations were found in both Malay and Chinese populations. A total of nine variations (16129, 16108, 16162, 16172, 16148, 16127, 16173, 16099 and 16100) were found in Malay population while a total of seven variations (16129, 16104, 16111, 16109, 16164, 16170 and 16136) were found in Chinese population. Nucleotide position 16129 was found as variation in both Malay and Chinese populations. This study implies that np 16129 can be used as a marker for Malaysian population. For further investigation, the length of the target sequence may be increased to obtain more variations that can be used as markers. This will increase the discrimination power of Malaysian population.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  11. Strobl C, Churchill Cihlar J, Lagacé R, Wootton S, Roth C, Huber N, et al.
    Forensic Sci Int Genet, 2019 09;42:244-251.
    PMID: 31382159 DOI: 10.1016/j.fsigen.2019.07.013
    The emergence of Massively Parallel Sequencing technologies enabled the analysis of full mitochondrial (mt)DNA sequences from forensically relevant samples that have, so far, only been typed in the control region or its hypervariable segments. In this study, we evaluated the performance of a commercially available multiplex-PCR-based assay, the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific), for the amplification and sequencing of the entire mitochondrial genome (mitogenome) from even degraded forensic specimens. For this purpose, more than 500 samples from 24 different populations were selected to cover the vast majority of established superhaplogroups. These are known to harbor different signature sequence motifs corresponding to their phylogenetic background that could have an effect on primer binding and, thus, could limit a broad application of this molecular genetic tool. The selected samples derived from various forensically relevant tissue sources and were DNA extracted using different methods. We evaluated sequence concordance and heteroplasmy detection and compared the findings to conventional Sanger sequencing as well as an orthogonal MPS platform. We discuss advantages and limitations of this approach with respect to forensic genetic workflow and analytical requirements.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  12. Zahidin MA, Jalil NA, Naharuddin NM, Abd Rahman MR, Gani M, Abdullah MT
    Data Brief, 2019 Aug;25:104133.
    PMID: 31321260 DOI: 10.1016/j.dib.2019.104133
    Tarsier is an endangered nocturnal primate in the family Tarsiidae and is an endemic to Sundaic islands of Philippine (Carlito syrichta), Sulawesi (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus). Recent records indicated that most molecular studies were done on the Eastern Tarsier and little information for the other group of tarsiers. Here, we present a partial cytochrome b data set of C. bancanus in Sarawak, Malaysian Borneo. Standard mist nets were deployed at strategic locations in various habitat types. A total of 18 individuals were caught, measured and weighed. Approximately, 2 × 2 mm of tissue samples were taken and preserved in molecular grade alcohol. Out of 18, only 11 samples were screened with partial mtDNA (cytochrome b) and the DNA sequences were registered in the GenBank (accession numbers: KY794797-KY794807). Phylogenetic trees were constructed with 20 additional mtDNA sequences downloaded from GenBank. The data are valuable for the management authorities to regulate the type of management units for the metapopulation to sustain population genetics integrity of tarsiers in the range countries across the Sunda Shelf.
    Matched MeSH terms: DNA, Mitochondrial
  13. Md-Zain BM, Abdul-Aziz A, Aifat NR, Mohd-Yusof NS, Zulkifli NA, Japning JRR, et al.
    Data Brief, 2019 Jun;24:103532.
    PMID: 31193484 DOI: 10.1016/j.dib.2018.11.117
    This article contains data of the sequence variation in the mitochondrial DNA D-loop region of the Malayan gaur (Bos gaurus hubbacki), locally known as the seladang, from two captive centers. Thirty fecal samples of Malayan gaur were collected from Jenderak Selatan Wildlife Conservation Center (Pahang) and the Sungkai Wildlife Reserve (Perak) for DNA extraction and amplification with polymerase chain reactions. DNA sequences were then analyzed using neighbor joining (NJ) and maximum parsimony (MP) methods. Based on the 652 base pairs obtained, we found seven variable characters with a value of 1%. The genetic distance between the two captive centers was 0.001. Haplotype analyses detected only four haplotypes between these two captive centers. Both NJ and MP trees demonstrate that all individuals in the Jenderak and Sungkai captive centers are in the same clade. Genetic variation of the Malayan gaur in these centers is considered low, possibly because individuals share the same common parent. This sequence variation data are of paramount importance for designing a proper breeding and management program of the Malayan gaur in the future.
    Matched MeSH terms: DNA, Mitochondrial
  14. Jamaluddin JAF, Mohammed Akib NA, Ahmad SZ, Abdul Halim SAA, Abdul Hamid NK, Mohd Nor SA
    PMID: 31012766 DOI: 10.1080/24701394.2019.1597073
    A total of 74 shrimp specimens were sequenced at a 584 bp segment of the cytochrome oxidase subunit I (COI) gene to examine patterns of DNA barcode variation in a mangrove biodiversity hotspot. The Maximum Likelihood tree, barcode gap analysis, Automatic Barcode Gap Discovery analysis and sequence comparisons with data available from Barcode of Life Data System and GenBank recovered 18 taxa of which 15 were identified to species level, 2 at genus level and a single taxon at order level. Two deep mitochondrial DNA lineage divergences were found in the giant tiger prawn, Penaeus monodon. It is suggested that one of the lineages is a consequence of an introduction from aquaculture activity. These results have provided a reliable barcode library for cataloguing shrimps in this area.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Shaari N'AL, Jaoi-Edward M, Loo SS, Salisi MS, Yusoff R, Ab Ghani NI, et al.
    BMC Genet, 2019 03 25;20(1):37.
    PMID: 30909863 DOI: 10.1186/s12863-019-0741-0
    BACKGROUND: In Malaysia, the domestic water buffaloes (Bubalus bubalis) are classified into the swamp and the murrah buffaloes. Identification of these buffaloes is usually made via their phenotypic appearances. This study characterizes the subspecies of water buffaloes using karyotype, molecular and phylogenetic analyses. Blood of 105 buffaloes, phenotypically identified as swamp, murrah and crossbred buffaloes were cultured, terminated and harvested using conventional karyotype protocol to determine the number of chromosomes. Then, the D-loop of mitochondrial DNA of 10 swamp, 6 crossbred and 4 murrah buffaloes which were identified earlier by karyotyping were used to construct a phylogenetic tree was constructed.

    RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.

    CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.

    Matched MeSH terms: DNA, Mitochondrial
  16. Tätte K, Pagani L, Pathak AK, Kõks S, Ho Duy B, Ho XD, et al.
    Sci Rep, 2019 03 07;9(1):3818.
    PMID: 30846778 DOI: 10.1038/s41598-019-40399-8
    Surrounded by speakers of Indo-European, Dravidian and Tibeto-Burman languages, around 11 million Munda (a branch of Austroasiatic language family) speakers live in the densely populated and genetically diverse South Asia. Their genetic makeup holds components characteristic of South Asians as well as Southeast Asians. The admixture time between these components has been previously estimated on the basis of archaeology, linguistics and uniparental markers. Using genome-wide genotype data of 102 Munda speakers and contextual data from South and Southeast Asia, we retrieved admixture dates between 2000-3800 years ago for different populations of Munda. The best modern proxies for the source populations for the admixture with proportions 0.29/0.71 are Lao people from Laos and Dravidian speakers from Kerala in India. The South Asian population(s), with whom the incoming Southeast Asians intermixed, had a smaller proportion of West Eurasian genetic component than contemporary proxies. Somewhat surprisingly Malaysian Peninsular tribes rather than the geographically closer Austroasiatic languages speakers like Vietnamese and Cambodians show highest sharing of IBD segments with the Munda. In addition, we affirmed that the grouping of the Munda speakers into North and South Munda based on linguistics is in concordance with genome-wide data.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Ibrahim AH, Rahman NNA, Saifuddeen SM, Baharuddin M
    Sci Eng Ethics, 2019 02;25(1):129-142.
    PMID: 29071572 DOI: 10.1007/s11948-017-9980-5
    Tri-parent baby technology is an assisted reproductive treatment which aims to minimize or eliminate maternal inheritance of mutated mitochondrial DNA (mtDNA). The technology became popular following the move by the United Kingdom in granting license to a group of researchers from the Newcastle Fertility Centre, Newcastle University to conduct research on the symptoms of defective mtDNA. This technology differs from other assisted reproductive technology because it involves the use of gamete components retrieved from three different individuals. Indirectly, it affects the preservation of lineage which is important from an Islamic point of view. This paper aims to analyze and discuss the implications of the tri-parent technology on preservation of lineage from the perspective of Maqasid al-Shari'ah based the Islamic bioethics. The analysis shows that there are a few violations of the preservation of lineage, hence the tri-parent baby technology should not be permitted.
    Matched MeSH terms: DNA, Mitochondrial*
  18. Yusoff AAM, Abdullah WSW, Khair SZNM, Radzak SMA
    Oncol Rev, 2019 Jan 14;13(1):409.
    PMID: 31044027 DOI: 10.4081/oncol.2019.409
    Mitochondria are cellular machines essential for energy production. The biogenesis of mitochondria is a highly complex and it depends on the coordination of the nuclear and mitochondrial genome. Mitochondrial DNA (mtDNA) mutations and deletions are suspected to be associated with carcinogenesis. The most described mtDNA deletion in various human cancers is called the 4977-bp common deletion (mDNA4977) and it has been explored since two decades. In spite of that, its implication in carcinogenesis still unknown and its predictive and prognostic impact remains controversial. This review article provides an overview of some of the cellular and molecular mechanisms underlying mDNA4977 formation and a detailed summary about mDNA4977 reported in various types of cancers. The current knowledges of mDNA4977 as a prognostic and predictive marker are also discussed.
    Matched MeSH terms: DNA, Mitochondrial
  19. Pinotti T, Bergström A, Geppert M, Bawn M, Ohasi D, Shi W, et al.
    Curr Biol, 2019 01 07;29(1):149-157.e3.
    PMID: 30581024 DOI: 10.1016/j.cub.2018.11.029
    The Americas were the last inhabitable continents to be occupied by humans, with a growing multidisciplinary consensus for entry 15-25 thousand years ago (kya) from northeast Asia via the former Beringia land bridge [1-4]. Autosomal DNA analyses have dated the separation of Native American ancestors from the Asian gene pool to 23 kya or later [5, 6] and mtDNA analyses to ∼25 kya [7], followed by isolation ("Beringian Standstill" [8, 9]) for 2.4-9 ky and then a rapid expansion throughout the Americas. Here, we present a calibrated sequence-based analysis of 222 Native American and relevant Eurasian Y chromosomes (24 new) from haplogroups Q and C [10], with four major conclusions. First, we identify three to four independent lineages as autochthonous and likely founders: the major Q-M3 and rarer Q-CTS1780 present throughout the Americas, the very rare C3-MPB373 in South America, and possibly the C3-P39/Z30536 in North America. Second, from the divergence times and Eurasian/American distribution of lineages, we estimate a Beringian Standstill duration of 2.7 ky or 4.6 ky, according to alternative models, and entry south of the ice sheet after 19.5 kya. Third, we describe the star-like expansion of Q-M848 (within Q-M3) starting at 15 kya [11] in the Americas, followed by establishment of substantial spatial structure in South America by 12 kya. Fourth, the deep branches of the Q-CTS1780 lineage present at low frequencies throughout the Americas today [12] may reflect a separate out-of-Beringia dispersal after the melting of the glaciers at the end of the Pleistocene.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  20. Martin MB, Chakona A
    Zookeys, 2019;848:103-118.
    PMID: 31160881 DOI: 10.3897/zookeys.848.32211
    Enteromiuspallidus was described by Smith in 1841 without a designated type specimen for the species. Herein, we designate a specimen from the Baakens River system as a neotype for E.pallidus and provide a thorough description for this species to facilitate ongoing taxonomic revisions of southern African Enteromius. Enteromiuspallidus can be distinguished from the other minnows in the "goldie barb group" by having an incomplete lateral line, lack of distinct chevron or tubular markings around lateral line pores, absence of a distinct lateral stripe, absence of wavy parallel lines along scale rows and lack of black pigmentation around the borders of the scales. We provide mtDNA COI sequences for the neotype and an additional specimen from the Baakens River as DNA barcodes of types and topotypes are a fundamental requirement for further taxonomic studies.
    Matched MeSH terms: DNA, Mitochondrial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links