Displaying publications 41 - 60 of 103 in total

Abstract:
Sort:
  1. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Enzyme Activation/drug effects
  2. Subramaniam KS, Tham ST, Mohamed Z, Woo YL, Mat Adenan NA, Chung I
    PLoS One, 2013;8(7):e68923.
    PMID: 23922669 DOI: 10.1371/journal.pone.0068923
    Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs) using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin) and hormonal (estrogen and progesterone) receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175%) when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51%) (P<0.0001). These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001), suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR), also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP)-1, interleukin (IL)-6, IL-8, RANTES and vascular endothelial growth factor (VEGF) than normal fibroblasts. Our data suggests that in contrast to normal fibroblasts, CAFs may exhibit a pro-tumorigenic effect in the progression of endometrial cancer, and PI3K/Akt and MAPK/Erk signaling may represent critical regulators in how endometrial cancer cells respond to their microenvironment.
    Matched MeSH terms: Enzyme Activation/drug effects
  3. Lee ST, Wong PF, Cheah SC, Mustafa MR
    PLoS One, 2011;6(4):e18915.
    PMID: 21541327 DOI: 10.1371/journal.pone.0018915
    Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.
    Matched MeSH terms: Enzyme Activation/drug effects
  4. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al.
    Basic Clin Pharmacol Toxicol, 2011 Mar;108(3):155-62.
    PMID: 20955360 DOI: 10.1111/j.1742-7843.2010.00635.x
    This study investigated the antinociceptive effects of zerumbone in chemical behavioural models of nociception in mice. Zerumbone given through intraperitoneal route (i.p.) produced dose-related antinociception when assessed on acetic acid-induced abdominal writhing test in mice. In addition, the i.p. administration of zerumbone exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin and bradykinin. Likewise, zerumbone given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). The antinociception caused by zerumbone in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine (nitric oxide precursor) and glibenclamide (ATP-sensitive K(+) channel inhibitor). However, the antinociception of zerumbone was enhanced by methylene blue (non-specific gyanylyl cyclase inhibitor). Together, these results indicate that zerumbone produces pronounced antinociception against chemical models of nociception in mice. It also strongly suggests that the l-arginine-nitric oxide-cGMP-PKC-K(+) ATP channel pathways, the TRPV1 and kinin B2 receptors play an important role in the zerumbone-induced antinociception.
    Matched MeSH terms: Enzyme Activation/drug effects
  5. Chia YY, Yin YY, Ton SH, Kadir KB
    Exp. Clin. Endocrinol. Diabetes, 2010 Oct;118(9):617-24.
    PMID: 19998240 DOI: 10.1055/s-0029-1237703
    Glycyrrhizic acid (GA) has been reported to inhibit postprandial blood glucose rise and 11 β-hydroxysteroid dehydrogenase 1 (11 βHSD1) activity. As not much work has been done on GA effects on 11 βHSD1 and 2 and HOMA-IR at different treatment periods, this work was conducted. 60 male Sprague Dawley rats fed AD LIBITUM were assigned into six groups of control and treated that were given GA at different duration namely 12, 24 and 48 h. Treated and control groups were intraperitoneally administered with GA (50 mgkg (-1)) and saline respectively. Blood and subcutaneous (ATS) and visceral adipose tissue (ATV), abdominal (MA) and quadriceps femoris muscle (MT), liver (L) and kidney (K) were examined. HOMA-IR in GA-treated rats decreased in all groups (P<0.05). In the 12-h and 24-h treated rats, 11 βHSD1 activities decreased in all tissues (P<0.05) except MA and MT (P>0.05) in the former and ATV (P>0.05) in the latter. However, 11 βHSD1 activities decreased significantly in all tissues ( P<0.05) in the 48-h treated rats. Significant decrease in 11 βHSD2 (P>0.05) activities were observed in the L of all treatment groups and K in the 24-h and 48-h treated rats (P<0.05). Histological analysis on ATS showed increase in the number of small-size adipocytes while ATV adipocytes showed shrinkage after GA administration. Increased glycogen deposition in the L was observed in the GA-administered rats in all the treatment periods. In conclusion, GA treatment showed a decrease in the HOMA-IR and both 11 βHSD1 and 2 activities in all tissues, with more profound decrease in the 48-h treated rats.
    Matched MeSH terms: Enzyme Activation/drug effects
  6. Cheah YH, Nordin FJ, Tee TT, Azimahtol HL, Abdullah NR, Ismail Z
    Anticancer Res, 2008 Nov-Dec;28(6A):3677-89.
    PMID: 19189649
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
    Matched MeSH terms: Enzyme Activation/drug effects
  7. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Enzyme Activation/drug effects
  8. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2006 Jun;21(3):145-50.
    PMID: 16626370
    The aim of the present study was to determine whether or not lipopolysaccharide from Actinobacillus actinomycetemcomitans could stimulate arginase activity in a murine macrophage cell line (RAW264.7 cells).
    Matched MeSH terms: Enzyme Activation/drug effects
  9. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Enzyme Activation/drug effects
  10. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Enzyme Activation/drug effects
  11. Mohammed Abdul KS, Rayadurgam J, Faiz N, Jovanović A, Tan W
    J Cell Mol Med, 2020 09;24(18):10924-10934.
    PMID: 32794652 DOI: 10.1111/jcmm.15721
    In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 μM) significantly increased survival of cells exposed to hypoxia-reoxygenation. JC105 (10 μM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia-reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 μM) inhibited JC105-mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 μM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia-reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 μM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia-reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions.
    Matched MeSH terms: Enzyme Activation/drug effects
  12. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Enzyme Activation/drug effects
  13. Lai SL, Cheah SC, Wong PF, Noor SM, Mustafa MR
    PLoS One, 2012;7(5):e38103.
    PMID: 22666456 DOI: 10.1371/journal.pone.0038103
    BACKGROUND: Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.

    METHODOLOGY/PRINCIPAL FINDINGS: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.

    CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

    Matched MeSH terms: Enzyme Activation/drug effects
  14. Chan CK, Goh BH, Kamarudin MN, Kadir HA
    Molecules, 2012 May 31;17(6):6633-57.
    PMID: 22728359 DOI: 10.3390/molecules17066633
    The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.
    Matched MeSH terms: Enzyme Activation/drug effects
  15. Almansour AI, Kumar RS, Arumugam N, Basiri A, Kia Y, Ali MA
    Biomed Res Int, 2015;2015:965987.
    PMID: 25710037 DOI: 10.1155/2015/965987
    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor.
    Matched MeSH terms: Enzyme Activation
  16. Ghani NA, Norizan SN, Chan XY, Yin WF, Chan KG
    Sensors (Basel), 2014;14(7):11760-9.
    PMID: 24995373 DOI: 10.3390/s140711760
    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.
    Matched MeSH terms: Enzyme Activation
  17. Poobathy R, Sinniah UR, Xavier R, Subramaniam S
    Appl Biochem Biotechnol, 2013 Jul;170(5):1066-79.
    PMID: 23640259 DOI: 10.1007/s12010-013-0241-z
    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs.
    Matched MeSH terms: Enzyme Activation
  18. Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC
    Protein Sci, 2012 Aug;21(8):1210-21.
    PMID: 22692819 DOI: 10.1002/pro.2108
    The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
    Matched MeSH terms: Enzyme Activation
  19. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Enzyme Activation
  20. Jafri AM, Sarina S, George PJ, Nizam IM
    Med J Malaysia, 2004 Oct;59(4):480-5.
    PMID: 15779580 MyJurnal
    Recent study has shown that activation of the telomerase and p16 gene mutation are both necessary for tumorigenesis. Our objectives were to detect telomerase activity and investigate the possibility of p16 gene mutations in various types of brain tumor. We analyzed 23 tumor tissues collected in 2000 to 2002. Telomerase activity was detected by a TRAP assay using a TRAPEZE Telomerase Detection Kit (Intergen, Co). PCR-SSCP (Single Strand Conformation Polymorphism) analysis was performed to screen for p16 gene mutation at exon 1 and 2. The activity was detected in 26.1% of the brain tumor samples and mostly present in high-grade tumors. There was a significant association between telomerase activity status and tumor grade but not with patient criteria. Telomerase activity was detected in the analyzed tumors, supporting the fact that activation of telomerase is an important feature for tumorigenesis. There was no mobility shift of p16 gene using SSCP and suggested no mutation at exon 1 and 2 occurred in all samples. These results suggest that another mechanism of p16 gene alterations could be involved and associated with detectable telomerase activity in the progression of tumors.
    Matched MeSH terms: Enzyme Activation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links