Displaying publications 41 - 60 of 110 in total

Abstract:
Sort:
  1. Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F
    Crit Rev Biotechnol, 2016 Aug;36(4):619-29.
    PMID: 25669871 DOI: 10.3109/07388551.2014.1002381
    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
    Matched MeSH terms: Extracellular Matrix
  2. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
    Matched MeSH terms: Extracellular Matrix
  3. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Extracellular Matrix/chemistry*
  4. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Extracellular Matrix/metabolism
  5. Dashtdar H, Murali MR, Selvaratnam L, Balaji Raghavendran H, Suhaeb AM, Ahmad TS, et al.
    PeerJ, 2016;4:e1650.
    PMID: 26966647 DOI: 10.7717/peerj.1650
    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.
    Matched MeSH terms: Extracellular Matrix
  6. Morris MA, Dawson CW, Laverick L, Davis AM, Dudman JP, Raveenthiraraj S, et al.
    Sci Rep, 2016;6:19533.
    PMID: 26782058 DOI: 10.1038/srep19533
    Approximately 20% of global cancer incidence is causally linked to an infectious agent. Epstein-Barr virus (EBV) accounts for around 1% of all virus-associated cancers and is associated with nasopharyngeal carcinoma (NPC). Latent membrane protein 1 (LMP1), the major oncoprotein encoded by EBV, behaves as a constitutively active tumour necrosis factor (TNF) receptor activating a variety of signalling pathways, including the three classic MAPKs (ERK-MAPK, p38 MAPK and JNK/SAPK). The present study identifies novel signalling properties for this integral membrane protein via the induction and secretion of activin A and TGFβ1, which are both required for LMP1's ability to induce the expression of the extracellular matrix protein, fibronectin. However, it is evident that LMP1 is unable to activate the classic Smad-dependent TGFβ signalling pathway, but rather elicits its effects through the non-Smad arm of TGFβ signalling. In addition, there is a requirement for JNK/SAPK signalling in LMP1-mediated fibronectin induction. LMP1 also induces the expression and activation of the major fibronectin receptor, α5β1 integrin, an effect that is accompanied by increased focal adhesion formation and turnover. Taken together, these findings support the putative role for LMP1 in the pathogenesis of NPC by contributing to the metastatic potential of epithelial cells.
    Matched MeSH terms: Extracellular Matrix Proteins
  7. Aziz J, Shezali H, Radzi Z, Yahya NA, Abu Kassim NH, Czernuszka J, et al.
    Skin Pharmacol Physiol, 2016;29(4):190-203.
    PMID: 27434176 DOI: 10.1159/000447017
    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks.
    Matched MeSH terms: Extracellular Matrix/metabolism; Extracellular Matrix/ultrastructure
  8. Lee, Soo Leng, Zainal Ariff Abdul Rahman, Tsujigiwa, Hidetsugu, Takabatake, Kiyofumi, Nakano, Keisuke, Chai, Wen Lin, et al.
    Ann Dent, 2016;23(1):13-22.
    MyJurnal
    In recent years, three-dimensional (3D) in vitro cell culture models have earned great attention, especially in the field of human cancer disease modelling research as they provide a promising alternative towards the conventional two-dimensional (2D) monolayer culture of cells with improved tissue organization. In 2D cell culture systems, the complexity of cells on a planar surface does not accurately reflects the in vivo cellular microenvironment. Cells propagated in 3D cell culture model, on the other hand, exhibit physiologically relevant cell-to-cell interactions and cell-to-extracellular matrix (ECM) interactions, important in maintaining a normal homeostasis and specificity of tissues. This review gives an overview on 2D models and their limitations, followed by 3D cell culture models, their advantages, drawbacks and challenges in present perspectives. The review also highlights the dissimilarities of 2D and 3D models and the applicability of 3D models in current cancer research
    Matched MeSH terms: Extracellular Matrix
  9. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ethnopharmacol, 2017 Jan 04;195:143-158.
    PMID: 27818256 DOI: 10.1016/j.jep.2016.10.085
    ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia (EL) has been well-studied traditionally as a chief ingredient of many polyherbal formulations for the management of male osteoporosis. It has also been well-recognised to protect against bone calcium loss in orchidectomised rats.

    AIM OF THE STUDY: To evaluate the effects of EL on the time-mannered sequential proliferative, differentiative, and morphogenic modulation in osteoblasts compared with testosterone.

    MATERIALS AND METHODS: Cell proliferation was analysed using MTS assay and phase contrast microscopy. Osteogenic differentiation of MC3T3-E1 cells was assessed through a series of characteristic assays which include crystal violet staining, alkaline phosphatase (ALP) activity and Van Gieson staining. Taken together, the bone mineralization of extra cellular matrix (ECM) was estimated using alizarin red s (ARS) staining, von kossa staining, scanning electron microscopic (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The cell proliferation data clearly revealed the efficiency of EL particularly at a dose of 25µg/mL, in improving the growth of MC3T3-E1 cells compared with the untreated cells. Data also showed the prominence of EL in significantly promoting ALP activity throughout the entire duration of treatment compared with the testosterone-treated cells. The osteogenic differentiation potential of EL was further explored by analysing mineralization data which revealed that the calcified nodule formation (calcium deposition) and phosphate deposition was more pronounced in cells treated with 25µg/mL concentration of EL at various time points compared with the untreated and testosterone treated cells. The scanning electron microscopic (SEM) analysis also revealed highest globular masses of mineral deposits (identified as white colour crystals) in the ECM of cultured cells treated with 25µg/mL concentration of EL.

    CONCLUSION: Compared to testosterone, greater potential of EL in promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells provides an in vitro basis for the prevention of male osteoporosis. Thus, we anticipate that EL can be considered as an alternative approach to testosterone replacement therapy (TRT) for the treatment of male osteoporosis.

    Matched MeSH terms: Extracellular Matrix/metabolism
  10. Agarwal R, Agarwal P
    Exp Biol Med (Maywood), 2017 Feb;242(4):374-383.
    PMID: 27798117 DOI: 10.1177/1535370216675065
    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
    Matched MeSH terms: Extracellular Matrix/pathology*
  11. Heng BC, Gong T, Wang S, Lim LW, Wu W, Zhang C
    J Endod, 2017 Mar;43(3):409-416.
    PMID: 28231979 DOI: 10.1016/j.joen.2016.10.033
    INTRODUCTION: Dental follicle stem cells (DFSCs) possess neurogenic potential because they originate from the embryonic neural crest. This study investigated whether neural differentiation of DFSCs can be enhanced by culture on decellularized matrix substrata (NSC-DECM) derived from neurogenesis of human embryonic stem cells (hESCs).

    METHODS: The hESCs were differentiated into neural stem cells (NSCs), and NSC-DECM was extracted from confluent monolayers of NSCs through treatment with deionized water. DFSCs seeded on NSC-DECM, Geltrex, and tissue culture polystyrene (TCPS) were subjected to neural induction during a period of 21 days. Expression of early/intermediate (Musashi1, PAX6, NSE, and βIII-tubulin) and mature/late (NGN2, NeuN, NFM, and MASH1) neural markers by DFSCs was analyzed at the 7-, 14-, and 21-day time points with quantitative real-time polymerase chain reaction. Immunocytochemistry for detection of βIII-tubulin, PAX6, and NGN2 expression by DFSCs on day 7 of neural induction was also carried out.

    RESULTS: Quantitative RT-PCR showed that expression of PAX6, Musashi1, βIII-tubulin, NSE, NGN2, and NFM by DFSCs was enhanced on NSC-DECM versus either the Geltrex or TCPS groups. Immunocytochemistry showed that DFSCs in the NSC-DECM group displayed more intense staining for βIII-tubulin, PAX6, and NGN2 expression, together with more neurite outgrowths and elongated morphology, as compared with either Geltrex or TCPS.

    CONCLUSIONS: DECM derived from neurogenesis of hESCs can enhance the neurogenic potential of DFSCs.

    Matched MeSH terms: Extracellular Matrix
  12. Lan YW, Theng SM, Huang TT, Choo KB, Chen CM, Kuo HP, et al.
    Stem Cells Transl Med, 2017 03;6(3):1006-1017.
    PMID: 28297588 DOI: 10.5966/sctm.2016-0054
    Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti-inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM-preconditioned MSCs. OSM-preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM-preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor-β1- or OSM-induced extracellular matrix production in MRC-5 fibroblasts through paracrine effects. In bleomycin-induced lung fibrotic mice, transplantation of OSM-preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ-tagged MSCs were detected in the lung tissues of the OSM-preconditioned MSC-treated mice 18 days after post-transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM-preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine 2017;6:1006-1017.
    Matched MeSH terms: Extracellular Matrix
  13. Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo EC, et al.
    J Biomed Mater Res A, 2017 04;105(4):1083-1093.
    PMID: 28076902 DOI: 10.1002/jbm.a.36003
    Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1083-1093, 2017.
    Matched MeSH terms: Extracellular Matrix/chemistry*
  14. Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, et al.
    J Psychiatr Res, 2017 05;88:28-37.
    PMID: 28086126 DOI: 10.1016/j.jpsychires.2016.12.020
    The epigenetic changes of RELN that are involved in the development of dopaminergic neurons may fit the developmental theory of schizophrenia. However, evidence regarding the association of RELN DNA methylation with schizophrenia is far from sufficient, as studies have only been conducted on a few limited brain samples. As DNA methylation in the peripheral blood may mirror the changes taking place in the brain, the use of peripheral blood for a DNA methylation study in schizophrenia is feasible due to the scarcity of brain samples. Therefore, the aim of our study was to examine the relationship of DNA methylation levels of RELN promoters with schizophrenia using genomic DNA derived from the peripheral blood of patients with the disorder. The case control studies consisted of 110 schizophrenia participants and 122 healthy controls who had been recruited from the same district. After bisufhite conversion, the methylation levels of the DNA samples were calculated based on their differences of the Cq values assayed using the highly sensitive real-time MethyLight TaqMan® procedure. A significantly higher level of methylation of the RELN promoter was found in patients with schizophrenia compared to controls (p = 0.005) and also in males compared with females (p = 0.004). Subsequently, the RELN expression of the methylated group was 25 fold less than that of the non-methylated group. Based upon the assumption of parallel methylation changes in the brain and peripheral blood, we concluded that RELN DNA methylation might contribute to the pathogenesis of schizophrenia. However, the definite effects of methylation on RELN function during development and also in adult life still require further elaboration.
    Matched MeSH terms: Extracellular Matrix Proteins/blood*; Extracellular Matrix Proteins/genetics*
  15. Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, et al.
    Sci Rep, 2017 08 25;7(1):9421.
    PMID: 28842627 DOI: 10.1038/s41598-017-09892-w
    Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
    Matched MeSH terms: Extracellular Matrix
  16. Um Min Allah N, Berahim Z, Ahmad A, Kannan TP
    Tissue Eng Regen Med, 2017 Oct;14(5):495-505.
    PMID: 30603504 DOI: 10.1007/s13770-017-0065-y
    Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
    Matched MeSH terms: Extracellular Matrix
  17. Law JX, Liau LL, Saim A, Yang Y, Idrus R
    Tissue Eng Regen Med, 2017 Dec;14(6):699-718.
    PMID: 30603521 DOI: 10.1007/s13770-017-0075-9
    Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
    Matched MeSH terms: Extracellular Matrix Proteins
  18. Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Dec;18(4):585-595.
    PMID: 28748415 DOI: 10.1007/s10561-017-9645-2
    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.
    Matched MeSH terms: Extracellular Matrix/metabolism
  19. Ariffin SH, Manogaran T, Abidin IZ, Wahab RM, Senafi S
    Curr Stem Cell Res Ther, 2017;12(3):247-259.
    PMID: 27784228 DOI: 10.2174/1574888X11666161026145149
    Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
    Matched MeSH terms: Extracellular Matrix Proteins/genetics*; Extracellular Matrix Proteins/metabolism
  20. Siti Nazirah Yahya, Nurul Syafiqah Abdul Razak, Noraini Abu Bakar, Khairani Idah Mokhtar, Azrul Fazwan Kharuddin
    MyJurnal
    Evidence suggests that several genes; including MYO1H, play an important role in the
    etiology of Class III malocclusion. Single nucleotide polymorphism (SNP) in marker rs10850110 (locus
    12q24.11) within MYO1H gene has been associated with the incidence of mandibular prognathism
    (MP). MYO is a class 1 myosin that is responsible for the synthesis of Matrilin-1; an important
    protein involved in the formation of cartilage's extracellular matrix, hence is implicated in the
    formation of mandibular condyle cartilage. This study aimed to detect the presence of MYO1H
    (rs10850110) SNP and to determine its genotype and allele distribution in MP patient in the local
    population. (Copied from article).
    Matched MeSH terms: Extracellular Matrix
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links