Displaying publications 41 - 60 of 381 in total

Abstract:
Sort:
  1. Chen Y, McConkey KR, Fan P
    Oecologia, 2023 Aug;202(4):715-727.
    PMID: 37553533 DOI: 10.1007/s00442-023-05430-w
    Mutualistic and antagonistic plant-animal interactions differentially contribute to the maintenance of species diversity in ecological communities. Although both seed dispersal and predation by fruit-eating animals are recognized as important drivers of plant population dynamics, the mechanisms underlying how seed dispersers and predators jointly affect plant diversity remain largely unexplored. Based on mediating roles of seed size and species abundance, we investigated the effects of seed dispersal and predation by two sympatric primates (Nomascus concolor and Trachypithecus crepusculus) on local plant recruitment in a subtropical forest of China. Over a 26 month period, we confirmed that these primates were functionally distinct: gibbons were legitimate seed dispersers who dispersed seeds of 44 plant species, while langurs were primarily seed predators who destroyed seeds of 48 plant species. Gibbons dispersed medium-seeded species more effectively than small- and large-seeded species, and dispersed more seeds of rare species than common and dominant species. Langurs showed a similar predation rate across different sizes of seeds, but destroyed a large number of seeds from common species. Due to gut passage effects, gibbons significantly shortened the duration of seed germination for 58% of the dispersed species; however, for 54% of species, seed germination rates were reduced significantly. Our study underlined the contrasting contributions of two primate species to local plant recruitment processes. By dispersing rare species and destroying the seeds of common species, both primates might jointly maintain plant species diversity. To maintain healthy ecosystems, the conservation of mammals that play critical functional roles needs to receive further attention.
    Matched MeSH terms: Forests
  2. Chua KWJ, Liew JH, Wilkinson CL, Ahmad AB, Tan HH, Yeo DCJ
    J Anim Ecol, 2021 06;90(6):1433-1443.
    PMID: 33666230 DOI: 10.1111/1365-2656.13462
    Studies have shown that food chain length is governed by interactions between species richness, ecosystem size and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by initial high levels of trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.
    Matched MeSH terms: Forests
  3. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ
    Parasit Vectors, 2019 Jul 25;12(1):364.
    PMID: 31345256 DOI: 10.1186/s13071-019-3627-0
    BACKGROUND: We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types.

    RESULTS: A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species.

    CONCLUSIONS: The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.

    Matched MeSH terms: Forests
  4. Chung RCK, Soepadmo E
    PhytoKeys, 2020;161:99-106.
    PMID: 33100836 DOI: 10.3897/phytokeys.161.55781
    A new species of Diplodiscus is described and illustrated from one collection made in lowland mixed dipterocarp forest in Sabah, Malaysia. Conspicuous by its twig colour, leaf shape and indumentum, it is probably allied to D. longifolius, but differs in sufficient characters (shape, indumentum, apex and venation of blade, flower bud shape and size, petal diameter, ovary shape and fruit shape and size) to be a species in its own right. A key to the species of Diplodiscus in Malaysia also is provided.
    Matched MeSH terms: Forests
  5. Clements GR, Lynam AJ, Gaveau D, Yap WL, Lhota S, Goosem M, et al.
    PLoS One, 2014;9(12):e115376.
    PMID: 25521297 DOI: 10.1371/journal.pone.0115376
    Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
    Matched MeSH terms: Forests*
  6. Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, et al.
    Nature, 2024 Jan;625(7996):728-734.
    PMID: 38200314 DOI: 10.1038/s41586-023-06820-z
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
    Matched MeSH terms: Forests*
  7. Cooper HV, Evers S, Aplin P, Crout N, Dahalan MPB, Sjogersten S
    Nat Commun, 2020 01 21;11(1):407.
    PMID: 31964892 DOI: 10.1038/s41467-020-14298-w
    Conversion of tropical peat swamp forest to drainage-based agriculture alters greenhouse gas (GHG) production, but the magnitude of these changes remains highly uncertain. Current emissions factors for oil palm grown on drained peat do not account for temporal variation over the plantation cycle and only consider CO2 emissions. Here, we present direct measurements of GHGs emitted during the conversion from peat swamp forest to oil palm plantation, accounting for CH4 and N2O as well as CO2. Our results demonstrate that emissions factors for converted peat swamp forest is in the range 70-117 t CO2 eq ha-1 yr-1 (95% confidence interval, CI), with CO2 and N2O responsible for ca. 60 and ca. 40% of this value, respectively. These GHG emissions suggest that conversion of Southeast Asian peat swamp forest is contributing between 16.6 and 27.9% (95% CI) of combined total national GHG emissions from Malaysia and Indonesia or 0.44 and 0.74% (95% CI) of annual global emissions.
    Matched MeSH terms: Forests
  8. Costantini D, Sebastiano M, Goossens B, Stark DJ
    Folia Primatol., 2017;88(1):46-56.
    PMID: 28662508 DOI: 10.1159/000477540
    Accelerometers enable scientists to quantify the activity of free-living animals whose direct observation is difficult or demanding due to their elusive nature or nocturnal habits. However, the deployment of accelerometers on small-bodied animals and, in particular, on primates has been little explored. Here we show the first application of accelerometers on the western tarsier (Cephalopachus bancanus borneanus), a nocturnal, small-bodied primate endemic to the forests of Borneo. The fieldwork was carried out in the Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysian Borneo. We provide guidelines for the deployment of accelerometers on tarsiers that might also be applied to other primate species. Our collected data on 2 females show levels of leaping activity comparable to those previously described using direct observation of wild or captive individuals. The 2 females showed different patterns of leaping activity, which calls for work to explore individual differences further. Our work demonstrates that accelerometers can be deployed on small primates to acquire body motion data that would otherwise be demanding to collect using classic field observations. Future work will be focused on using accelerometer data to discriminate in more detail the different behaviours tarsiers can display and to address the causes and consequences of individual variations in activity.
    Matched MeSH terms: Forests
  9. Cui J, Cui J, Peng Y, Yao D, Chan A, Chen Z, et al.
    Sci Total Environ, 2020 Jun 27;744:140558.
    PMID: 32711301 DOI: 10.1016/j.scitotenv.2020.140558
    Fluxes and composition dynamics of atmospheric nitrogen deposition play key roles in better balancing economic development and ecological environment. However, there are some knowledge gaps and difficulties in urban ecosystems, especially for small and medium-sized cities. In this study, both flux and composition (ratio of NH4+-N to NO3--N, RN) of wet-deposited dissolved inorganic nitrogen (DIN, sum of NO3--N and NH4+-N) were estimated and sources were identified at a long-term urban observation station in Tongling, a typical medium-sized city in eastern China during 2010-2016, respectively. Results showed that wet-deposited DIN fluxes were 33.20 and 28.15 kgN ha-1 yr-1 in Tongling city during 2010-2011 and 2015-2016, respectively. Compared to these two periods, both DIN and NO3--N fluxes decreased by 15.2% and 31.8% for a series of NOx abatement measures applied effectively, respectively. At the same time, the NH4+-N flux remained stable and ranged from 19.53 to 20.62 kgN ha-1 yr-1, and the RN increased from 1.7 to 2.2. Seasonally, winds from the southwest and west-southwest with higher frequencies and speeds in spring and summer brought more NH4+-N and DIN wet deposition from an ammonia plant, which could threaten the safety of regional hydrosphere ecosystems. On the whole, the wet-deposited NH4+-N was threatening regional ecosystems of both the hydrosphere and forest. The wet-deposited DIN including NH4+-N in Tongling city stemmed mainly from a combined source of coal combustion and dust from Cu extraction and smelting, ammonia production, and roads. Therefore, production lines should be updated for Cu extraction and smelting industries, thermal power generations and the ammonia plant, old vehicles should be eliminated, and the use of new energy vehicles should be promoted for regional sustainable development and human health in the medium-sized city.
    Matched MeSH terms: Forests
  10. Czepczor-Bernat K, Modrzejewska J, Modrzejewska A, Swami V
    Int J Environ Res Public Health, 2022 Nov 05;19(21).
    PMID: 36361429 DOI: 10.3390/ijerph192114548
    Studies have shown that nature exposure is associated with a more positive body image, but field studies remain relatively infrequent. Here, we examine the impact of a woodland walk on an index of state positive body image (i.e., state body appreciation), as well as dispositional and environmental determinants of body image improvements. Eighty-seven Polish women went for a walk in Cygański Las, an ancient woodland, and completed a measure of state body appreciation before and after the walk. As hypothesised, state body appreciation was significantly higher post-walk compared to pre-walk (d = 0.56). Additionally, we found that the trait of self-compassion-but not the traits of connectedness to nature, perceived aesthetic qualities of the woodland, or subjective restoration-was significantly associated with larger improvements in state body appreciation. These results suggest that even relatively brief exposure to nature results in elevated state body appreciation, with the dispositional trait of self-compassion being associated with larger effects.
    Matched MeSH terms: Forests
  11. D MR, Linkie M
    PLoS One, 2020;15(12):e0243932.
    PMID: 33315909 DOI: 10.1371/journal.pone.0243932
    Across the tropics, large-bodied mammals have been affected by selective logging in ways that vary with levels of timber extraction, collateral damage, species-specific traits and secondary effects of hunting, as facilitated by improved access through logging roads. In Peninsular Malaysia, 3.0 million hectares or 61 percent of its Permanent Reserved Forests is officially assigned for commercial selective logging. Understanding how wildlife adapts and uses logged forest is critical for its management and, for threatened species, their conservation. In this study, we quantify the population status of four tropical ungulate species in a large selectively logged forest reserve and an adjacent primary forest protected area. We then conduct finer scale analyses to identify the species-specific factors that determine their occurrence. A combined indirect sign-camera trapping approach with a large sampling effort (2,665 km and 27,780 trap nights surveyed) covering a wide area (560 km2) generated species-specific detection probabilities and site occupancies. Populations of wild boar were widespread across both logged and primary forests, whereas sambar and muntjac occupancy was lower in logged forest (48.4% and 19.2% respectively), with gaur showing no significant difference. Subsequent modelling revealed the importance of conserving lower elevation habitat in both habitat types, particularly <1,000 m asl, for which occupancies of sambar, muntjac and gaur were typically higher. This finding is important because 75 percent (~13,400 km2) of Peninsular Malaysia's Main Range Forest (Banjaran Titiwangsa) is under 1,000 m asl and therefore at risk of being converted to industrial timber plantations, which calls for renewed thinking around forest management planning.
    Matched MeSH terms: Forests
  12. Dančák M, Hroneš M, Sochor M, Sochorová Z
    PLoS One, 2018;13(10):e0203443.
    PMID: 30281609 DOI: 10.1371/journal.pone.0203443
    Thismia kelabitiana, a new unique species from the Sarawak state of Malaysia in the island of Borneo is described and illustrated. This new species is not similar to any species of Thismia described so far especially by having a unique form of mitre and outer perianth lobes deeply divided into 8-10 acute lobes and forming striking fringe around perianth tube opening. The species appears to be critically endangered due to ongoing logging activities in the region. It may potentially become a surrogate species for lower montane forests of the region and thus help protect them against further destruction.
    Matched MeSH terms: Forests
  13. Darmawan MA, Muhammad BZ, Harahap AFP, Ramadhan MYA, Sahlan M, Haryuni, et al.
    Heliyon, 2020 Dec;6(12):e05742.
    PMID: 33364505 DOI: 10.1016/j.heliyon.2020.e05742
    Tengkawang fat (Shorea stenoptera), from an indigenous plant of the Kalimantan forest, has excellent potential as an alternative source of vegetable fat because it has a high level of fatty acids composition. Activated natural bentonite can be used as a bleaching agent to improve the quality of tengkawang fat. This research aims to reduce the acidity, peroxide number values and identify the physicochemical properties (fatty acid composition, nutrients, and thermal) of tengkawang butter. Initially, tengkawang samples from Nanga Yen and Sintang were pre-treated using the degumming process with 1% phosphoric acid and the neutralization process with a 1 M NaOH 10% w/w solution. The results show that the acidity (mg NaOH/g) of the tengkawang fat samples was reduced from 11.00 to 3.36 when using bentonite activated at 200 °C. The bentonite activated with 0.5 M HCl reduced the acidity to 3.61. The peroxide number (meq O2/kg) of the tengkawang fat samples was reduced from 9.45 to 4.84 and 3.47 by bleaching with thermal-activated and acid-activated bentonites, respectively. Peroxide value correlates with β-carotene content. The smaller of the β-carotene content, the smaller the peroxide value. The acidity, peroxide number, and iodine number values from tengkawang fat after treatment adhere to the SNI 2903: 2016 standard. The main content of fatty acids in tengkawang fat is palmitic acid, stearic acid, and oleic acid. These results show that both products are suitable for the food industry in terms of the acid and peroxide numbers. The application of this research results will assist local people in increasing the economic value of the product from tengkawang plant, which is an indigenous plant from Kalimantan.
    Matched MeSH terms: Forests
  14. Davies AB, Ancrenaz M, Oram F, Asner GP
    Proc Natl Acad Sci U S A, 2017 Aug 01;114(31):8307-8312.
    PMID: 28720703 DOI: 10.1073/pnas.1706780114
    The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.
    Matched MeSH terms: Forests
  15. Deere NJ, Guillera-Arroita G, Swinfield T, Milodowski DT, Coomes DA, Bernard H, et al.
    Proc Natl Acad Sci U S A, 2020 10 20;117(42):26254-26262.
    PMID: 32989143 DOI: 10.1073/pnas.2001823117
    Tropical forest ecosystems are facing unprecedented levels of degradation, severely compromising habitat suitability for wildlife. Despite the fundamental role biodiversity plays in forest regeneration, identifying and prioritizing degraded forests for restoration or conservation, based on their wildlife value, remains a significant challenge. Efforts to characterize habitat selection are also weakened by simple classifications of human-modified tropical forests as intact vs. degraded, which ignore the influence that three-dimensional (3D) forest structure may have on species distributions. Here, we develop a framework to identify conservation and restoration opportunities across logged forests in Borneo. We couple high-resolution airborne light detection and ranging (LiDAR) and camera trap data to characterize the response of a tropical mammal community to changes in 3D forest structure across a degradation gradient. Mammals were most responsive to covariates that accounted explicitly for the vertical and horizontal characteristics of the forest and actively selected structurally complex environments comprising tall canopies, increased plant area index throughout the vertical column, and the availability of a greater diversity of niches. We show that mammals are sensitive to structural simplification through disturbance, emphasizing the importance of maintaining and enhancing structurally intact forests. By calculating occurrence thresholds of species in response to forest structural change, we identify areas of degraded forest that would provide maximum benefit for multiple high-conservation value species if restored. The study demonstrates the advantages of using LiDAR to map forest structure, rather than relying on overly simplistic classifications of human-modified tropical forests, for prioritizing regions for restoration.
    Matched MeSH terms: Forests
  16. Deva MP
    Int Psychiatry, 2005 Apr;2(8):14-16.
    PMID: 31507809
    Malaysia is a tropical country in the heart of South East Asia, at the crossroads of the ancient east-west sea trade routes. Although independent from British colonial rule only in 1957, it has a recorded history dating back to at least the first century CE, when the region was already the source of valuable mineral and forest produce that found markets in China, India and further west.
    Matched MeSH terms: Forests
  17. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
    Matched MeSH terms: Forests*
  18. Ditzer T, Glauner R, Förster M, Köhler P, Huth A
    Tree Physiol, 2000 Mar;20(5_6):367-381.
    PMID: 12651452
    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at the FMU level. The simulations predict slow recovery rates, and regeneration times far exceeding 100 years.
    Matched MeSH terms: Forests
  19. Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, et al.
    Sci Rep, 2021 Mar 19;11(1):6416.
    PMID: 33742002 DOI: 10.1038/s41598-021-81865-6
    Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
    Matched MeSH terms: Forests*
  20. Dorairaj D, Osman N
    PeerJ, 2021;9:e10477.
    PMID: 33520435 DOI: 10.7717/peerj.10477
    Population increase and the demand for infrastructure development such as construction of highways and road widening are intangible, leading up to mass land clearing. As flat terrains become scarce, infrastructure expansions have moved on to hilly terrains, cutting through slopes and forests. Unvegetated or bare slopes are prone to erosion due to the lack of or insufficient surface cover. The combination of exposed slope, uncontrolled slope management practices, poor slope planning and high rainfall as in Malaysia could steer towards slope failures which then results in landslides under acute situation. Moreover, due to the tropical weather, the soils undergo intense chemical weathering and leaching that elevates soil erosion and surface runoff. Mitigation measures are vital to address slope failures as they lead to economic loss and loss of lives. Since there is minimal or limited information and investigations on slope stabilization methods in Malaysia, this review deciphers into the current slope management practices such as geotextiles, brush layering, live poles, rock buttress and concrete structures. However, these methods have their drawbacks. Thus, as a way forward, we highlight the potential application of soil bioengineering methods especially on the use of whole plants. Here, we discuss the general attributions of a plant in slope stabilization including its mechanical, hydrological and hydraulic effects. Subsequently, we focus on species selection, and engineering properties of vegetation especially rooting structures and architecture. Finally, the review will dissect and assess the ecological principles for vegetation establishment with an emphasis on adopting the mix-culture approach as a slope failure mitigation measure. Nevertheless, the use of soil bioengineering is limited to low to moderate risk slopes only, while in high-risk slopes, the use of traditional engineering measure is deemed more appropriate and remain to be the solution for slope stabilization.
    Matched MeSH terms: Forests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links