Displaying publications 41 - 60 of 123 in total

Abstract:
Sort:
  1. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  2. Azahar MA, Al-Naqeb G, Hasan M, Adam A
    Asian Pac J Trop Med, 2012 Nov;5(11):875-81.
    PMID: 23146801 DOI: 10.1016/S1995-7645(12)60163-1
    OBJECTIVE: To investigate the hypoglycemic effect of the aqueous extract of Octomeles sumatrana (O. sumatrana) (OS) in streptozotocin-induced diabetic rats (STZ) and its molecular mechanisms.

    METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in to male Sprague-Dawley rats. Rats were divided into six different groups; normal control rats were not induced with STZ and served as reference, STZ diabetic control rats were given normal saline. Three groups were treated with OS aqueous extract at 0.2, 0.3 and 0.5 g/kg, orally twice daily continuously for 21 d. The fifth group was treated with glibenclamide (6 mg/kg) in aqueous solution orally continuously for 21 d. After completion of the treatment period, biochemical parameters and expression levels of glucose transporter 2 (Slc2a2), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PCK1) were determined in liver by quantitative real time PCR.

    RESULTS: Administration of OS at different doses to STZ induced diabetic rats, resulted in significant decrease (P<0.05) in blood glucose level in a dose dependent manner by 36%, 48%, and 64% at doses of 0.2, 0.3 and 0.5 g/kg, respectively, in comparison to the STZ control values. Treatment with OS elicited an increase in the expression level of Slc2a2 gene but reduced the expression of G6Pase and PCK1 genes. Morefore, OS treated rats, showed significantly lower levels of serum alanine transaminase (ALT), aspartate aminotransferase (AST) and urea levels compared to STZ untreated rats. The extract at different doses elicited signs of recovery in body weight gain when compared to STZ diabetic controls although food and water consumption were significantly lower in treated groups compared to STZ diabetic control group.

    CONCLUSIONS: O. sumatrana aqueous extract is beneficial for improvement of hyperglycemia by increasing gene expression of liver Slc2a2 and reducing expression of G6Pase and PCK1 genes in streptozotocin-induced diabetic rats.

    Matched MeSH terms: Gene Expression Regulation/drug effects
  3. Salleh MN, Ismail P, Abdullah AS, Taufiq-Yap YH, Carmichael P
    IUBMB Life, 2004 Jul;56(7):409-16.
    PMID: 15545218
    Studies with clastogenic carcinogen diethylstilbestrol (DES) resulted in a broad of spectrum of toxic and carcinogenic effects in humans and rodents, but the cellular and molecular mechanism(s) by which it induces cancer is not clear. To identify putative genetic targets for p53 in vivo, we applied the cDNA macroarray gene expression profiles associated with apoptosis by comparing p53+/- knockout mice and wild-type mice on the kidney and uterus of female mice. p53+/- knockout mice and wild-type mice were treated with DES (500 micromole kg(-1)) or vehicle i.p once daily for 4 days. Total RNAs were obtained from kidney and uterus of both control and DES-treated. The signal intensities of individual gene spots on the membrane were quantified and normalized to the expression level of the GAPDH gene as an internal control. Our results demonstrated that 16 genes; bad, bax, bcl-2, bcl-w, bcl-x, caspase-3, caspase-7, caspase-8, c-myc, E124, GADD45, mdm2, NKkappab1, p53, p21, Rb and trail were up-regulated and six genes; caspase-1, caspase-2, DR5, E2F1, FasL and iNOS did not changed in response to DES treatment in wild-type mice compared to p53+/- knockout mice. Most genes are involved in cell cycle regulation, signal transduction, apoptosis, or transcription. The greatest changes were seen in bad, bcl-x, mdm2, p53 and p21 gene expression in wild-type mice compared to p53+/- knockout mice. In comparing p53 and p21 gene expression in wild-type mice and p53+/- knockout mice, there was an 4.4-fold vs. 1.8-fold; 8-fold vs. 5.2-fold for kidney and 16-fold vs. 5.5-fold; 2.1-fold vs. 8.3-fold for uterus samples increase in induction (respectively). RT-PCR and densitometric analysis was used to confirm the biggest changes of p21, p53 and bax genes. Using this approach, we have identified apoptosis associated genes regulated in response to DES and have revealed putative differences between the isogenic parent strain and p53+/- knockout mice, which will contribute to a better understanding of toxicity/carcinogenicity mechanisms in this model.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  4. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  5. Chen YF, Chong CL, Wu YC, Wang YL, Tsai KN, Kuo TM, et al.
    PLoS One, 2015;10(6):e0131743.
    PMID: 26121644 DOI: 10.1371/journal.pone.0131743
    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  6. Ismail N, Giribabu N, Muniandy S, Salleh N
    Int J Med Sci, 2015;12(6):468-77.
    PMID: 26078707 DOI: 10.7150/ijms.11210
    Restoring the pH of cervicovaginal fluid is important for the cervicovaginal health after menopause. Genistein, which is a widely consumed dietary health supplement to overcome the post-menopausal complications could help to restore the cervicovaginal fluid pH. We hypothesized that genistien effect involves changes in expression of NHE-1, 2 and 4 proteins and mRNAs in the cervix. This study investigated effect of genistein on NHE-1, 2 and 4 protein and mRNA expression in the cervix in order to elucidate the mechanisms underlying possible effect of this compound on cervicovaginal fluid pH after menopause.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  7. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  8. Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF
    Int J Mol Sci, 2020 Apr 03;21(7).
    PMID: 32260203 DOI: 10.3390/ijms21072492
    Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  9. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, et al.
    Neurotoxicology, 2019 12;75:89-104.
    PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008
    Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  10. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  11. Lee SY, Wong WF, Dong J, Cheng KK
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825228 DOI: 10.3390/molecules25173783
    Macrophage activation is a key event that triggers inflammatory response. The activation is accompanied by metabolic shift such as upregulated glucose metabolism. There are accumulating evidences showing the anti-inflammatory activity of Momordica charantia. However, the effects of M. charantia on inflammatory response and glucose metabolism in activated macrophages have not been fully established. The present study aimed to examine the effect of M. charantia in modulating lipopolysaccharide (LPS)-induced inflammation and perturbed glucose metabolism in RAW264.7 murine macrophages. The results showed that LPS-induced NF-κB (p65) nuclear translocation was inhibited by M. charantia treatment. In addition, M. charantia was found to reduce the expression of inflammatory genes including IL6, TNF-α, IL1β, COX2, iNOS, and IL10 in LPS-treated macrophages. Furthermore, the data showed that M. charantia reduced the expression of GLUT1 and HK2 genes and lactate production (-28%), resulting in suppression of glycolysis. Notably, its effect on GLUT1 gene expression was found to be independent of LPS-induced inflammation. A further experiment also indicated that the bioactivities of M. charantia may be attributed to its key bioactive compound, charantin. Taken together, the study provided supporting evidences showing the potential of M. charantia for the treatment of inflammatory disorders.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  12. Sadikan MZ, Nasir NAA, Agarwal R, Ismail NM
    Biomolecules, 2020 04 05;10(4).
    PMID: 32260544 DOI: 10.3390/biom10040556
    : Oxidative stress plays an important role in retinal neurodegeneration and angiogenesis associated with diabetes. In this study, we investigated the effect of the tocotrienol-rich fraction (TRF), a potent antioxidant, against diabetes-induced changes in retinal layer thickness (RLT), retinal cell count (RCC), retinal cell apoptosis, and retinal expression of vascular endothelial growth factor (VEGF) in rats. Additionally, the efficacy of TRF after administration by two different routes was compared. The diabetes was induced in Sprague-Dawley rats by intraperitoneal injection of streptozotocin. Subsequently, diabetic rats received either oral or topical treatment with vehicle or TRF. Additionally, a group of non-diabetic rats was included with either oral or topical treatment with a vehicle. After 12 weeks of the treatment period, rats were euthanized, and retinas were collected for measurement of RLT, RCC, retinal cell apoptosis, and VEGF expression. RLT and RCC in the ganglion cell layer were reduced in all diabetic groups compared to control groups (p < 0.01). However, at the end of the experimental period, oral TRF-treated rats showed a significantly greater RLT compared to topical TRF-treated rats. A similar observation was made for retinal cell apoptosis and VEGF expression. In conclusion, oral TRF supplementation protects against retinal degenerative changes and an increase in VEGF expression in rats with streptozotocin-induced diabetic retinopathy. Similar effects were not observed after topical administration of TRF.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  13. Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee LH, et al.
    J Cell Mol Med, 2020 01;24(1):722-736.
    PMID: 31680470 DOI: 10.1111/jcmm.14780
    Evidence demonstrates that M1 macrophage polarization promotes inflammatory disease. Here, we discovered that (R)-salbutamol, a β2 receptor agonist, inhibits and reprograms the cellular metabolism of RAW264.7 macrophages. (R)-salbutamol significantly inhibited LPS-induced M1 macrophage polarization and downregulated expressions of typical M1 macrophage cytokines, including monocyte chemotactic protein-1 (MCP-1), interleukin-1β (IL-1β) and tumour necrosis factor α (TNF-α). Also, (R)-salbutamol significantly decreased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and reactive oxygen species (ROS), while increasing the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. In contrast, (S)-salbutamol increased the production of NO and ROS. Bioenergetic profiles showed that (R)-salbutamol significantly reduced aerobic glycolysis and enhanced mitochondrial respiration. Untargeted metabolomics analysis demonstrated that (R)-salbutamol modulated metabolic pathways, of which three metabolic pathways, namely, (a) phenylalanine metabolism, (b) the pentose phosphate pathway and (c) glycerophospholipid metabolism were the most noticeably impacted pathways. The effects of (R)-salbutamol on M1 polarization were inhibited by a specific β2 receptor antagonist, ICI-118551. These findings demonstrated that (R)-salbutamol inhibits the M1 phenotype by downregulating aerobic glycolysis and glycerophospholipid metabolism, which may propose (R)-salbutamol as the major pharmacologically active component of racemic salbutamol for the treatment of inflammatory diseases and highlight the medicinal value of (R)-salbutamol.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  14. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  15. Hang CY, Kitahashi T, Parhar IS
    J Neurochem, 2015 May;133(4):501-10.
    PMID: 25727787 DOI: 10.1111/jnc.13084
    Zebrafish possess two isoforms of vertebrate ancient long (VAL)-opsin, val-opsinA (valopa) and val-opsinB (valopb), which probably mediate non-visual responses to light. To understand the diurnal and light-sensitive regulation of the valop genes in different cell groups, the current study used real-time quantitative PCR to examine the diurnal changes of valopa and b mRNA levels in different brain areas of adult male zebrafish. Furthermore, effects of the extended exposure to light or dark condition, luminous levels and the treatment with a melatonin receptor agonist or antagonist on valop transcription were examined. In the thalamus, valop mRNA levels showed significant diurnal changes; valopa peaked in the evening, while valopb peaked in the morning. The diurnal change of valopa mRNA levels occurred independent of light conditions, whereas that of valopb mRNA levels were regulated by light. A melatonin receptor agonist or antagonist did not affect the changes of valop mRNA levels. In contrast, the midbrain and hindbrain showed arrhythmic valop mRNA levels under light and dark cycles. The differential diurnal regulation of the valopa and b genes in the thalamus and the arrhythmic expression in the midbrain and hindbrain suggest involvement of deep brain VAL-opsin in time- and light-dependent physiology. We show diurnal expression changes of vertebrate ancient long (VAL) opsin genes (valopa and valopb), depending on brain area, time of day and light condition, in the adult male zebrafish. Differential regulation of the valop genes in the thalamus and arrhythmic expression in the midbrain and hindbrain suggest their involvement in time- and light-dependent physiology to adjust to environmental changes.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  16. Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, et al.
    Eur J Immunol, 2014 Mar;44(3):894-904.
    PMID: 24310293 DOI: 10.1002/eji.201343496
    Runx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated. The regulatory mechanism for differential transcription is, however, not fully understood. In this study, we investigated the regulation of the proximal Runx1 promoter in T cells. We showed that proximal Runx1 was expressed at a low level in naïve T cells from C57BL/6 mice, but its expression was remarkably induced upon T-cell activation. In the promoter of proximal Runx1, a highly conserved region was identified which spans from -412 to the transcription start site and harbors a NFAT binding site. In a luciferase reporter assay, this region was found to be responsive to T-cell activation through Lck and calcineurin pathways. Mutagenesis studies and chromatin immunoprecipitation assay indicated that the NFAT site was essential for NFAT binding and transactivation of the proximal Runx1 promoter. Furthermore, TCR signaling-induced expression of proximal Runx1 was blocked by treatment of cells with cyclosporin A. Together, these results demonstrate that the calcineurin-NFAT pathway regulates proximal Runx1 transcription upon TCR stimulation.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  17. Fung SY, Lee ML, Tan NH
    Toxicon, 2015 Mar;96:38-45.
    PMID: 25615711 DOI: 10.1016/j.toxicon.2015.01.012
    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  18. Ramiah SK, Atta Awad E, Hemly NIM, Ebrahimi M, Joshua O, Jamshed M, et al.
    J Anim Sci, 2020 Oct 01;98(10).
    PMID: 32936879 DOI: 10.1093/jas/skaa300
    This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  19. Yap WH, Ooi BK, Ahmed N, Lim YM
    J Biosci, 2018 Jun;43(2):277-285.
    PMID: 29872016
    Secretory phospholipase A2-IIA (sPLA2-IIA) is one of the key enzymes causing lipoprotein modification and vascular inflammation. Maslinic acid is a pentacyclic triterpene which has potential cardioprotective and anti-inflammatory properties. Recent research showed that maslinic acid interacts with sPLA2-IIA and inhibits sPLA2-IIA-mediated monocyte differentiation and migration. This study elucidates the potential of maslinic acid in modulating sPLA2-IIA-mediated inflammatory effects in THP-1 macrophages. We showed that maslinic acid inhibits sPLA2-IIA-mediated LDL modification and suppressed foam cell formation. Further analysis revealed that sPLA2-IIA only induced modest LDL oxidation and that inhibitory effect of maslinic acid on sPLA2-IIA-mediated foam cells formation occurred independently of its anti-oxidative properties. Interestingly, maslinic acid was also found to significantly reduce lipid accumulation observed in macrophages treated with sPLA2-IIA only. Flow cytometry analysis demonstrated that the effect observed in maslinic acid might be contributed in part by suppressing sPLA2-IIA-induced endocytic activity, thereby inhibiting LDL uptake. The study further showed that maslinic acid suppresses sPLA2-IIA-induced up-regulation of PGE2 levels while having no effects on COX-2 activity. Other pro-inflammatory mediators TNF-a and IL-6 were not induced in sPLA2-IIA-treated THP-1 macrophages. The findings of this study showed that maslinic acid inhibit inflammatory effects induced by sPLA2-IIA, including foam cells formation and PGE2 production.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  20. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Horm Mol Biol Clin Investig, 2020 Jun 29;41(4).
    PMID: 32598308 DOI: 10.1515/hmbci-2020-0009
    BACKGROUND: Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.

    MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.

    RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.

    CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.

    Matched MeSH terms: Gene Expression Regulation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links