Displaying publications 41 - 60 of 464 in total

Abstract:
Sort:
  1. Oh L, Hainaut P, Blanchet S, Ariffin H
    BMC Cancer, 2020 Feb 10;20(1):110.
    PMID: 32041553 DOI: 10.1186/s12885-020-6599-8
    BACKGROUND: TP53 mutations occur in only about 3% of primary and 10-20% of relapse B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). However, alternative mechanisms may contribute to functionally impairing the p53 pathway in the absence of a mutation. Candidate mechanisms include overexpression of p53 mRNA variants encoding either dominant-negative p53 protein isoforms such as Delta40p53 and Delta133p53, or modulatory isoforms such as p53beta, which counteract the effects of Delta133p53 on replicative senescence in T-lymphocytes.

    METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls).

    RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls.

    CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.

    Matched MeSH terms: Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*; Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology*; Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
  2. Kuan JW, Su AT, Wahab M, Hamdan A, Hashim J, Kiyu A, et al.
    BMC Cancer, 2023 Jun 19;23(1):563.
    PMID: 37337159 DOI: 10.1186/s12885-023-10988-y
    BACKGROUND: Published epidemiological studies of haematological cancers are few. Hereby we present a 20-year epidemiological data of haematological cancers in Sarawak from a population-based cancer registry.

    METHODS: Haematological cancer cases with ICD-10 coded C81-C96 and ICD-O coded /3 diagnosed from 1996 to 2015 were retrieved from Sarawak Cancer Registry. Adult was defined as those 15 years and above. Incidence rate (IR) was calculated based on yearly Sarawak citizen population stratified to age, gender, and ethnic groups. Age-standardised IR (ASR) was calculated using Segi World Standard Population.

    RESULTS: A total of 3,947 cases were retrieved and analysed. ASR was 10 and male predominance (IR ratio 1.32, 95%CI 1.24,1.41). Haematological cancers generally had a U-shaped distribution with lowest IR at age 10-14 years and exponential increment from age 40 years onwards, except acute lymphoblastic leukaemia (ALL) with highest IR in paediatric 2.8 versus adult 0.5. There was a significant difference in ethnic and specific categories of haematological cancers, of which, in general, Bidayuh (IR ratio 1.13, 95%CI 1.00, 1.27) and Melanau (IR ratio 0.54, 95%CI 0.45, 0.65) had the highest and lowest ethnic-specific IR, respectively, in comparison to Malay. The ASR (non-Hodgkin lymphoma, acute myeloid leukaemia, ALL, chronic myeloid leukaemia, and plasma cell neoplasm) showed a decreasing trend over the 20 years, -2.09 in general, while Hodgkin lymphoma showed an increasing trend of + 2.80. There was crude rate difference between the 11 administrative divisions of Sarawak.

    CONCLUSIONS: This study provided the IR and ASR of haematological cancers in Sarawak for comparison to other regions of the world. Ethnic diversity in Sarawak resulted in significant differences in IR and ASR.

    Matched MeSH terms: Leukemia, Myeloid, Acute*
  3. Chua LL, Rajasuriar R, Lim YAL, Woo YL, Loke P, Ariffin H
    BMC Cancer, 2020 Feb 24;20(1):151.
    PMID: 32093640 DOI: 10.1186/s12885-020-6654-5
    BACKGROUND: Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy.

    METHODOLOGY: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy.

    RESULTS: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health.

    CONCLUSION: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.

    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy; Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology*; Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
  4. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*; Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism; Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology
  5. Omer FAA, Hashim NM, Ibrahim MY, Aldoubi AF, Hassandarvish P, Dehghan F, et al.
    BMC Complement Altern Med, 2017 Jul 17;17(1):366.
    PMID: 28716025 DOI: 10.1186/s12906-017-1867-0
    BACKGROUND: Beta-mangostin (BM) is a xanthone-type of natural compound isolated from Cratoxylum arborescens. This study aimed to examine the apoptosis mechanisms induced by BM in a murine monomyelocytic cell line (WEHI-3) in vitro and in vivo.

    METHODS: A WEHI-3 cell line was used to evaluate the cytotoxicity of BM by MTT. AO/PI and Hoechst 33342 dyes, Annexin V, multiparametric cytotoxicity 3 by high content screening (HCS); cell cycle tests were used to estimate the features of apoptosis and BM effects. Caspase 3 and 9 activities, ROS, western blot for Bcl2, and Bax were detected to study the mechanism of apoptosis. BALB/c mice injected with WEHI-3 cells were used to assess the apoptotic effect of BM in vivo.

    RESULTS: BM suppressed the growth of WEHI-3 cells at an IC50value of 14 ± 3 μg/mL in 24 h. The ROS production was increased inside the cells in the treated doses. Both caspases (9 and 3) were activated in treating WEHI-3 cells at 24, 48 and 72 h. Different signs of apoptosis were detected, such as cell membrane blebbing, DNA segmentation and changes in the asymmetry of the cell membrane. Another action by which BM could inhibit WEHI-3 cells is to restrain the cell cycle at the G1/G0 phase. In the in vivo study, BM reduced the destructive effects of leukaemia on the spleen and liver by inducing apoptosis in leukaemic cells.

    CONCLUSION: BM exerts anti-leukaemic properties in vitro and in vivo.

    Matched MeSH terms: Leukemia/drug therapy*
  6. Kah TA, Yong KC, Rahman RA
    BMC Ophthalmol, 2011;11:30.
    PMID: 22044440 DOI: 10.1186/1471-2415-11-30
    To report a case of disseminated fusariosis with endogenous endophthalmitis in a patient with acute lymphoblastic leukemia. Transfusion-associated immune modulation secondary to platelet transfusion could play an important role in the pathophysiology of this case.
    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications; Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
  7. Basabaeen AA, Abdelgader EA, BaHashwan OS, Babekir EA, Abdelateif NM, Bamusa SA, et al.
    BMC Res Notes, 2019 May 23;12(1):282.
    PMID: 31122288 DOI: 10.1186/s13104-019-4319-8
    OBJECTIVE: To investigate the ZAP-70 and CD38 expressions and their combined expressions in Sudanese B-CLL patients and their relationships with clinical and hematological characteristics as well as the disease staging at presentation.

    RESULTS: In the present cross-sectional descriptive study, analysis of ZAP-70 expression showed that 36/110 (32.7%) patients positively expressed ZAP-70 and insignificant higher presentation in intermediate and at advanced stages as well as no correlation was seen with hematological parameters and clinical features compared with negatively ZAP-70, on the other hand, 41/110 (37.3%) were CD38+ and no significant correlation was shown with the stage at presentation, clinical characteristics (except Splenomegaly, P = 0.02) and hematological parameters. However, in combined expressions of both ZAP-70 and CD38 together, 20/110 (18.2%) were concordantly ZAP-70+/CD38+, 53/110 (48.2%) concordantly ZAP-70-/CD38- and 37/110 (33.6%) either ZAP-70+ or CD38+, and these three groups showed insignificant correlation with clinical (except Splenomegaly, P = 0.03) and hematological parameters, and the stage at presentation. Our data showed the combined analysis of these two markers, lead to classify our patients into three subgroups (either concordant positive, negative or discordant expressions) with statistically insignificant correlation with clinical presentation (except Splenomegaly), hematological parameters and stage at presentation of B-CLL patients.

    Matched MeSH terms: Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis*; Leukemia, Lymphocytic, Chronic, B-Cell/genetics; Leukemia, Lymphocytic, Chronic, B-Cell/immunology; Leukemia, Lymphocytic, Chronic, B-Cell/pathology
  8. Lian BSX, Yek AEH, Shuvas H, Abdul Rahman SF, Muniandy K, Mohana-Kumaran N
    BMC Res Notes, 2018 Mar 27;11(1):197.
    PMID: 29580266 DOI: 10.1186/s13104-018-3302-0
    OBJECTIVE: There are number of studies which report that BCL-2 anti-apoptotic proteins (e.g. BCL-2, BCL-XL, and MCL-1) are highly expressed in cervical cancer tissues compared to the normal cervical epithelia. Despite these reports, targeting these proteins for cervical cancer treatment has not been explored extensively. BH3-mimetics that inhibit specific BCL-2 anti-apoptotic proteins may hold encouraging treatment outcomes for cervical cancer management. Hence, the aim of this pilot study is to investigate the sensitivity of cervical cancer cell lines to combination of two BH3-mimetics namely ABT-263 which selectively inhibits BCL-2, BCL-XL and BCL-w and A-1210477, a selective MCL-1 inhibitor.

    RESULTS: We report that combination of A-1210477 and ABT-263 exhibited synergistic effects on all cervical cancer cell lines tested. Drug sensitization studies revealed that A-1210477 sensitised the cervical cancer cell lines SiHa and CaSki to ABT-263 by 11- and fivefold, respectively. Sensitization also occurred in the opposite direction whereby ABT-263 sensitised SiHa and CaSki to A-1210477 by eightfold. This report shows that combination of ABT-263 and A-1210477 could be a potential treatment strategy for cervical cancer. Extensive drug mechanistic studies and drug sensitivity studies in physiological models are necessary to unleash the prospect of this combination for cervical cancer therapy.

    Matched MeSH terms: Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors*; Myeloid Cell Leukemia Sequence 1 Protein/metabolism
  9. Bande F, Arshad SS, Hassan L, Zakaria Z, Sapian NA, Rahman NA, et al.
    BMC Vet Res, 2012 Mar 22;8:33.
    PMID: 22439903 DOI: 10.1186/1746-6148-8-33
    BACKGROUND: Feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) are major causes of morbidity and mortality in domestic and wild felids. Despite the clinical importance of feline retroviruses and the growing interest in cats as pets, information about FeLV and FIV in Malaysia is presently insufficient to properly advise veterinarians and pet owners. A cross-sectional study was carried out from January 2010 to December 2010 to determine the prevalence and risk factors associated with FeLV and FIV among domestic cats in peninsular Malaysia. Plasma samples were harvested from the blood of 368 domestic cats and screened for evidence of FeLV p27 antigen and FIV antibodies, using an immunochromatographic kit. Additionally, data on cat demographics and health were collected using a structured questionnaire, and were evaluated as potential risk factors for FeLV or FIV status.

    RESULTS: Of the 368 cats that were evaluated in this study, 12.2% (45/368; 95% CI = 8.88 - 15.58) were positive for FeLV p27 antigen, 31.3%, (115/368; 95% CI = 26.51 - 35.99) were seropositive to FIV antibodies, and 4.3% (16/368; 95% CI = 2.27 - 6.43) had evidence of both viruses. Factors found to significantly increase the risk for FeLV seropositivity include sex, age, behaviour, sickness, and living in a multi-cat household. Seropositive response to FIV was significantly associated with sex, neuter status, age, behaviour, and health status.

    CONCLUSIONS: The present study indicates that FeLV and FIV are common among domestic cats in peninsular Malaysia, and that factors related to cat demographics and health such as age, sex, behaviour, health status and type of household are important predictors for seropositive status to FeLV or FIV in peninsular Malaysia. High prevalence of FeLV or FIV observed in our study is of concern, in view of the immunosuppressive potentials of the two pathogens. Specific measures for control and prevention such as screening and routine vaccination are needed to ensure that FeLV and FIV are controlled in the cat population of peninsular Malaysia.

    Matched MeSH terms: Leukemia Virus, Feline*
  10. Peyman M, Hieng TL, Subrayan V
    BMJ Case Rep, 2011;2011.
    PMID: 22698906 DOI: 10.1136/bcr.11.2010.3517
    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications*; Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
  11. Kasinathan G
    BMJ Case Rep, 2020 Jul 23;13(7).
    PMID: 32709663 DOI: 10.1136/bcr-2020-235543
    Plasma cell leukaemia (PCL) is an aggressive haematological malignancy which is classified into primary (pPCL) and secondary PCL. A 39-year-old Indian man presented to the Department of Hematology with a 2-week history of fever and lethargy. Clinically, he was pale and febrile. Haemogram revealed bicytopenia with leucocytosis. The peripheral blood film portrayed rouleax formation with 45% of circulating plasma cells. Serum protein electrophoresis and immunofixation revealed IgG lambda paraproteinaemia of 48 g/L. Bone marrow aspirate, flow cytometry and trephine were consistent with IgG lambda pPCL. He was treated with six cycles of bortezomib, thalidomide and dexamethasone combination chemotherapy followed by high-dose melphalan conditioning and autologous stem cell transplant. Currently, he is in complete remission for the past 18 months and is on oral lenalidomide maintenance therapy. Prognosis is often dismal in pPCL with the median overall survival below 1 year if treatment is delayed.
    Matched MeSH terms: Leukemia, Plasma Cell
  12. Raffali MAA, Boon Cong B, Muhammad SF, Che Hassan HH
    BMJ Case Rep, 2023 Sep 25;16(9).
    PMID: 37748814 DOI: 10.1136/bcr-2023-255396
    A man in his 20s with underlying chemorefractory primary T-lymphoblastic lymphoma and hypereosinophilia developed acute chest pain in the ward after readmission for disease progression. ECG showed widespread ST depression and serum troponin was markedly elevated. Transthoracic echocardiography showed diffused thrombus deposition with preserved ejection fraction consistent with eosinophilic myocarditis. The patient ultimately succumbed to the disease, after complications with severe hospital-acquired pneumonia.
    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma*; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma*
  13. Muhamad NA, Mohd Dali NS, Mohd Yacob A, Kassim MSA, Lodz NA, Abdul Wahid SF, et al.
    BMJ Open, 2020 Jun 15;10(6):e032503.
    PMID: 32540885 DOI: 10.1136/bmjopen-2019-032503
    INTRODUCTION: Acute myeloid leukaemia (AML) is a type of cancer in which the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells or platelets. Gemtuzumab ozogamicin (GO) holds promise as a new agent that also could be efficacious in newly diagnosed AML with acceptable toxicity. This paper describes the design of a protocol to conduct a systematic review of published studies assessing GO for the treatment of AML.

    METHOD AND ANALYSIS: We will conduct a systematic review of randomised controlled trials that investigate the effect and safety of GO for the treatment of patients with AML. We will search for any eligible articles from selected electronic databases. We will follow the Preferred Reporting Items for Systematic reviews and Meta-Analysis for study selection and reporting. We will use The Cochrane Handbook for Systematic Reviews of Interventions and Meta-Analysis as guidance to select eligible studies. All data will be extracted using a standardised data extraction form.

    ETHICS AND DISSEMINATION: There was no patient involved in this study, therefore no ethical consideration is needed. The findings of this study will be disseminated in a peer-reviewed journal and any relevant conference presentation.

    PROSPERO REGISTRATION NUMBER: CRD42019123286.

    Matched MeSH terms: Leukemia, Myeloid, Acute/drug therapy
  14. Amini R, Azizi Jalilian F, Veerakumarasivam A, Abdullah S, Abdulamir AS, Nadali F, et al.
    Biomed Res Int, 2013;2013:752603.
    PMID: 23509773 DOI: 10.1155/2013/752603
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML). Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1) delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.
    Matched MeSH terms: Leukemia, Myeloid, Acute/genetics*; Leukemia, Myeloid, Acute/therapy
  15. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
    Matched MeSH terms: Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism*; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
  16. Zhang Y, Lee S, Xu W
    Biochem Biophys Res Commun, 2020 04 16;524(4):1018-1024.
    PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021
    Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
    Matched MeSH terms: Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
  17. Abdul Rahman SF, Muniandy K, Soo YK, Tiew EYH, Tan KX, Bates TE, et al.
    Biochem Biophys Rep, 2020 Jul;22:100756.
    PMID: 32346617 DOI: 10.1016/j.bbrep.2020.100756
    Development of resistance to chemo- and radiotherapy in patients suffering from advanced cervical cancer narrows the therapeutic window for conventional therapies. Previously we reported that a combination of the selective BCL-2 family inhibitors ABT-263 and A-1210477 decreased cell proliferation in C33A, SiHa and CaSki human cervical cancer cell lines. As ABT-263 binds to both BCL-2 and BCL-XL with high affinity, it was unclear whether the synergism of the drug combination was driven either by singly inhibiting BCL-2 or BCL-XL, or inhibition of both. In this present study, we used the BCL-2 selective inhibitor ABT-199 and the BCL-XL selective inhibitor A1331852 to resolve the individual antitumor activities of ABT-263 into BCL-2 and BCL-XL dependent mechanisms. A-1210477 was substituted for the orally bioavailable S63845. Four cervical cancer cell lines were treated with the selective BCL-2 family inhibitors ABT-199, A1331852 and S63845 alone and in combination using 2-dimensional (2D) and 3-dimensional (3D) cell culture models. The SiHa, C33A and CaSki cell lines were resistant to single agent treatment of all three drugs, suggesting that none of the BCL-2 family of proteins mediate survival of the cells in isolation. HeLa cells were resistant to single agent treatment of ABT-199 and A1331852 but were sensitive to S63845 indicating that they depend on MCL-1 for survival. Co-inhibition of BCL-2 and MCL-1 with ABT-199 and S63845, inhibited cell proliferation of all cancer cell lines, except SiHa. However, the effect of the combination was not as pronounced as combination of A1331852 and S63845. Co-inhibition of BCL-XL and MCL-1 with A1331852 and S63845 significantly inhibited cell proliferation of all four cell lines. Similar data were obtained with 3-dimensional spheroid cell culture models generated from two cervical cancer cell lines in vitro. Treatment with a combination of A1331852 and S63845 resulted in inhibition of growth and invasion of the 3D spheroids. Collectively, our data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or BCL-2 may be potentially useful as treatment strategies for the management of cervical cancer.
    Matched MeSH terms: Myeloid Cell Leukemia Sequence 1 Protein
  18. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, et al.
    Bioengineered, 2022 Jun;13(6):14681-14718.
    PMID: 35946342 DOI: 10.1080/21655979.2022.2100863
    Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
    Matched MeSH terms: Leukemia*
  19. Wong KK, Lawrie CH, Green TM
    Biomark Insights, 2019;14:1177271919846454.
    PMID: 31105426 DOI: 10.1177/1177271919846454
    Epigenetic alteration has been proposed to give rise to numerous classic hallmarks of cancer. Impaired DNA methylation plays a central role in the onset and progression of several types of malignancies, and DNA methylation is mediated by DNA methyltransferases (DNMTs) consisting of DNMT1, DNMT3A, and DNMT3B. DNMTs are frequently implicated in the pathogenesis and aggressiveness of acute myeloid leukaemia (AML) patients. In this review, we describe and discuss the oncogenic roles of DNMT1, DNMT3A, and DNMT3B in AML. The clinical response predictive roles of DNMTs in clinical trials utilising hypomethylating agents (azacitidine and decitabine) in AML patients are presented. Novel hypomethylating agent (guadecitabine) and experimental DNMT inhibitors in AML are also discussed. In summary, hypermethylation of tumour suppressors mediated by DNMT1 or DNMT3B contributes to the progression and severity of AML (except MLL-AF9 and inv(16)(p13;q22) AML for DNMT3B), while mutation affecting DNMT3A represents an early genetic lesion in the pathogenesis of AML. In clinical trials of AML patients, expression of DNMTs is downregulated by hypomethylating agents while the clinical response predictive roles of DNMT biomarkers remain unresolved. Finally, nucleoside hypomethylating agents have continued to show enhanced responses in clinical trials of AML patients, and novel non-nucleoside DNMT inhibitors have demonstrated cytotoxicity against AML cells in pre-clinical settings.
    Matched MeSH terms: Leukemia, Myeloid, Acute
  20. Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, et al.
    Biomed Pharmacother, 2014 Apr;68(3):343-9.
    PMID: 24581936 DOI: 10.1016/j.biopha.2014.01.009
    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients.
    Matched MeSH terms: Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links