Displaying publications 41 - 60 of 108 in total

Abstract:
Sort:
  1. Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1627-1638.
    PMID: 29981824 DOI: 10.1016/j.ijbiomac.2018.07.008
    Recently, drug functionalized biodegradable polymers have been appreciated to be imperative to fabricate multi-drug delivery nanosystems for sustainable drug release. In this work, amphiphilic chitosan-grafted-(cetyl alcohol-maleic anhydride-pyrazinamide) (CS-g-(CA-MA-PZA)) was synthesized by multi-step reactions. The incorporation of rifampicin (RF) and entrapment of silver nanoparticles (Ag NPs) on CS-g-(CA-MA-PZA) polymer was carried out by dialysis technique. From the FT-IR experiment, the polymer modification, incorporation of drugs and the entrapment of Ag NPs on micelles were confirmed. The surface morphology of Ag NPs, polymeric system and drug loaded micelles was described by SEM, TEM and AFM techniques. In addition, the controlled release behaviour of CS-g-(CA-MA-PZA) micelles was studied by UV-Vis spectroscopy. In vitro cell viability, cell apoptosis and cellular uptake experiments shows that multi-drug delivery system could enhance the biocompatibility and higher the cytotoxicity effect on the cells. Since the prepared amphiphilic polymeric micelles exhibit spotty features and the system is a promising strategy for a novel candidate for immediate therapeutically effects for alveolar macrophages.
    Matched MeSH terms: Microscopy, Atomic Force
  2. Rosly NZ, Ahmad SA, Abdullah J, Yusof NA
    Sensors (Basel), 2016 Aug 25;16(9).
    PMID: 27571080 DOI: 10.3390/s16091365
    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.
    Matched MeSH terms: Microscopy, Atomic Force
  3. Wong YM, Masunaga H, Chuah JA, Sudesh K, Numata K
    Biomacromolecules, 2016 Oct 10;17(10):3375-3385.
    PMID: 27642764
    Amyloid fibers are classified as a new generation of tunable bionanomaterials that exhibit new functions related to their distinctive characteristics, such as their universality, tunability, and stiffness. Here, we introduce the catalytic residues of serine protease into a peptide catalyst (PC) via an enzyme-mimic approach. The rational design of a repeating pattern of polar and nonpolar amino acids favors the conversion of the peptides into amyloid-like fibrils via self-assembly. Distinct fibrous morphologies have been observed at different pH values and temperatures, which indicates that different fibril packing schemes can be designed; hence, fibrillar peptides can be used to generate efficient artificial catalysts for amidolytic activities at mild pH values. The results of atomic force microscopy, Raman spectroscopy, and wide-angle X-ray scattering analyses are used to discuss and compare the fibril structure of a fibrillar PC with its amidolytic activity. The pH of the fibrillation reaction crucially affects the pKa of the side chains of the catalytic triads and is important for stable fibril formation. Temperature is another important parameter that controls the self-assembly of peptides into highly stacked and laminated morphologies. The morphology and stability of fibrils are crucial and represent important factors for demonstrating the capability of the peptides to exert amidolytic activity. The observed amidolytic activity of PC4, one of the PCs, was validated using an inhibition assay, which revealed that PC4 can perform enzyme-like amidolytic catalysis. These results provide insights into the potential use of designed peptides in the generation of efficient artificial enzymes.
    Matched MeSH terms: Microscopy, Atomic Force
  4. Habib M, Chew HP
    J Pak Med Assoc, 2019 Oct;69(10):1509-1513.
    PMID: 31622307
    Dentine erosion is an increasingly recognised problem, especially in aging population, and various methods have been utilised for its assessment. This narrative review was planned to summarise the methods for the assessment of the early stages of dentine erosion. Relevant original articles published in the English language from 2013 to 2017 were reviewed. Laboratory techniques and methods with in vivo potential were separately studied. It is evident that the assessment of early dentine erosion is complex and requires a combination of methods. For clinical evaluation, chemical analysis and optical methods show great potential but are in need of more validation.
    Matched MeSH terms: Microscopy, Atomic Force
  5. Razali MH, Ismail NA, Mat Amin KA
    Int J Biol Macromol, 2020 Jun 15;153:1117-1135.
    PMID: 31751725 DOI: 10.1016/j.ijbiomac.2019.10.242
    The synthesized titanium dioxide nanotubes (TiO2-NTs) were emerged as wound healing enhancer as well as exhibited significant wound healing activity on Sprague Dawley rats. In our present study, the blends of GG and TiO2-NTs bio-nanocomposite film was characterised by fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, atomic force microscopy (AFM). The morphology of TiO2-NTs was investigated using transmission electron microscopy (TEM). The mechanical properties study shows that the GG + TiO2-NTs (20 w/w %) bio-nanocomposite film possessed the highest tensile strength and young modulus which are (4.56 ± 0.15) MPa and (68 ± 1.63) MPa, respectively. GG + TiO2-NTs (20 w/w %) also displays the highest antibacterial activity with (16 ± 0.06) mm, (16 ± 0.06) mm, (14 ± 0.06) mm, and (12 ± 0.25) mm inhibition zone were recorded against Staphylococcus aureus, Streptococcus, Escherichia coli, and Pseudomonas aeruginosa. The prepared bio-nanocomposite films have good biocompatibility against 3T3 mouse fibroblast cells and caused accelerated healing of open excision type wounds on Sprague Dawley rat model. The synergistic effects of bio-nanocomposite film like good swelling and WVTR properties, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.
    Matched MeSH terms: Microscopy, Atomic Force
  6. Letchumanan I, Md Arshad MK, Balakrishnan SR, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:40-47.
    PMID: 30716591 DOI: 10.1016/j.bios.2019.01.042
    This paper primarily demonstrates the approach to enhance the sensing performance on antigen C-reactive protein (CRP) and anti-CRP antibody binding event. A nanogapped electrode structure with the gap of ~100 nm was modified by the anti-CRP antibody (Probe) to capture the available CRP. In order to increase the amount of antigen to be captured, a gold nanorod with 119 nm in length and 25 nm in width was integrated, to increase the surface area. A comparative study between the existence and non-existence of gold nanorod utilization was evaluated. Analysis of the sensing surface was well-supported by atomic force microscopy, scanning electron microscopy, 3D nano-profilometry, high-power microscopy and UV-Vis spectroscopy. The dielectric voltammetric analysis was carried out from 0 V to 2 V. The sensitivity was calculated based on 3σ and attained as low as 1 pM, which is tremendously low compared to real CRP concentration (119 nM) in human blood serum. The gold nanorod conjugation with antibody has enhanced the sensitivity to 100 folds (10 fM). The specificity of the CRP detection by the proposed strategy was anchored by ELISA and failure in the detection of human blood clotting factor IX by voltammetry. Despite, CRP antigen was further detected in human serum by spiking CRP to run-through the detection with the physiologically relevant samples.
    Matched MeSH terms: Microscopy, Atomic Force
  7. Baba Ismail YM, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ
    Colloids Surf B Biointerfaces, 2017 Nov 01;159:445-453.
    PMID: 28837894 DOI: 10.1016/j.colsurfb.2017.07.086
    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications.
    Matched MeSH terms: Microscopy, Atomic Force
  8. Aziz J, Ahmad MF, Rahman MT, Yahya NA, Czernuszka J, Radzi Z
    Int J Biol Macromol, 2018 Feb;107(Pt A):1030-1038.
    PMID: 28939521 DOI: 10.1016/j.ijbiomac.2017.09.066
    Successful use of tissue expanders depends on the quality of expanded tissue. This study evaluates the impact of anisotropic self-inflating tissue expander (SITE) on the biomechanics of skin. Two different SITE were implanted subcutaneously on sheep scalps; SITE that requires 30days for maximum expansion (Group A; n=5), and SITE that requires 21days for maximum expansion (Group B; n=5). Control animals (n=5) were maintained without SITE implantation. Young's Modulus, D-periodicity, overlap and gap region length, diameter, and height difference between overlap and gap regions on collagen fibrils were analyzed using atomic force microscopy. Histology showed no significant differences in dermal thickness between control and expanded skin of groups A and B. Furthermore, most parameters of expanded skin were similar to controls (p>0.05). However, the height difference between overlap and gap regions was significantly smaller in group B compared to both control and group A (p<0.01). Strong correlation was observed between Young's Modulus of overlap and gap regions of the control and group A, but not group B. Results suggest that a relatively slower SITE can be useful in reconstructive surgery to maintain the biomechanical properties of expanded skin.
    Matched MeSH terms: Microscopy, Atomic Force
  9. Hassan MI, Sultana N
    3 Biotech, 2017 Aug;7(4):249.
    PMID: 28714045 DOI: 10.1007/s13205-017-0889-0
    Considering the important factor of bioactive nanohydoxyapatite (nHA) to enhance osteoconductivity or bone-bonding capacity, nHA was incorporated into an electrospun polycaprolactone (PCL) membrane using electrospinning techniques. The viscosity of the PCL and nHA/PCL with different concentrations of nHA was measured and the morphology of the electrospun membranes was compared using a field emission scanning electron microscopy. The water contact angle of the nanofiber determined the wettability of the membranes of different concentrations. The surface roughness of the electrospun nanofibers fabricated from pure PCL and nHA/PCL was determined and compared using atomic force microscopy. Attenuated total reflectance Fourier transform infrared spectroscopy was used to study the chemical bonding of the composite electrospun nanofibers. Beadless nanofibers were achieved after the incorporation of nHA with a diameter of 200-700 nm. Results showed that the fiber diameter and the surface roughness of electrospun nanofibers were significantly increased after the incorporation of nHA. In contrast, the water contact angle (132° ± 3.5°) was reduced for PCL membrane after addition of 10% (w/w) nHA (112° ± 3.0°). Ultimate tensile strengths of PCL membrane and 10% (w/w) nHA/PCL membrane were 25.02 ± 2.3 and 18.5 ± 4.4 MPa. A model drug tetracycline hydrochloride was successfully loaded in the membrane and the membrane demonstrated good antibacterial effects against the growth of bacteria by showing inhibition zone for E. coli (2.53 ± 0.06 cm) and B. cereus (2.87 ± 0.06 cm).
    Matched MeSH terms: Microscopy, Atomic Force
  10. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Liu WW, Poopalan P, et al.
    PLoS One, 2015;10(12):e0144964.
    PMID: 26694656 DOI: 10.1371/journal.pone.0144964
    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
    Matched MeSH terms: Microscopy, Atomic Force
  11. Reza F, Ibrahim NS
    Eur J Dent, 2015 2 26;9(1):74-79.
    PMID: 25713488 DOI: 10.4103/1305-7456.149646
    OBJECTIVE: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement.

    MATERIALS AND METHODS: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05).

    RESULTS: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively.

    CONCLUSIONS: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

    Matched MeSH terms: Microscopy, Atomic Force
  12. Hotta K, Ranganathan S, Liu R, Wu F, Machiyama H, Gao R, et al.
    PLoS Comput Biol, 2014 Apr;10(4):e1003532.
    PMID: 24722239 DOI: 10.1371/journal.pcbi.1003532
    Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.
    Matched MeSH terms: Microscopy, Atomic Force
  13. Ali K, Khan SA, Jafri MZ
    Nanoscale Res Lett, 2014;9(1):175.
    PMID: 24721986 DOI: 10.1186/1556-276X-9-175
    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.
    Matched MeSH terms: Microscopy, Atomic Force
  14. Tan HW, Misran M
    J Liposome Res, 2012 Dec;22(4):329-35.
    PMID: 22881198 DOI: 10.3109/08982104.2012.700459
    Preparation of chitosan-coated fatty acid liposomes is often restricted by the solubility of chitosan under basic conditions. In this experiment, the preparation of chitosan-coated oleic acid (OA) liposomes using low molecular weight (LMW) chitosan (10 and 25 kDA) was demonstrated. These selected LMW chitosans are water soluble. The coating of the chitosan layer on OA liposomes was confirmed by its microscope images and physicochemical properties, such as zeta potential and the size of the liposomes. The "peeling off" effect on the surface of chitosan-coated OA liposomes was observed in the atomic force microscope images and showed the occurrence of the chitosan layer on the surface of OA liposomes. The size of the chitosan-coated liposomes was at least 20 nm smaller than the OA liposomes, and the increase of zeta potential with the increasing amount of LMW chitosan further confirmed the presence of the surface modification of OA liposomes.
    Matched MeSH terms: Microscopy, Atomic Force
  15. Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR
    Int J Nanomedicine, 2011;6:3443-8.
    PMID: 22267928 DOI: 10.2147/IJN.S26812
    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.
    Matched MeSH terms: Microscopy, Atomic Force
  16. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:677-81.
    PMID: 21556342 DOI: 10.2147/IJN.S17669
    The application of "green" chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.
    Matched MeSH terms: Microscopy, Atomic Force
  17. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
    Matched MeSH terms: Microscopy, Atomic Force
  18. Ismail I, Arliyani, Jalil Z, Mursal, Olaiya NG, Abdullah CK, et al.
    Polymers (Basel), 2020 Sep 28;12(10).
    PMID: 32998404 DOI: 10.3390/polym12102236
    Conventionally, panel boards are produced with material flex or microparticle with P.U. or U.F. as adhesives. However, in this study, nanoparticle with epoxy resin as an adhesive was used to produce nanoboard. Coconut shell nanoparticle composite with epoxy resin as an adhesive was prepared using a compression molding technique. The coconut shell particles were originally 200 mesh size and then milled mechanically with a ball mill for the duration of 10, 20, 30, and 40 h (milling times) to produce nanoparticles. The composition ratio of the composite is 85 vol.% of coconut shell and 15 vol.% of epoxy resin. The formation of nanoparticles was observed with transmission electron microscopy (TEM). The mechanical, physical, and microstructure properties of the composite were examined with X-ray diffraction, scanning electron microscopy, atomic force microscopy, and universal testing machine. The results established that the properties of the composite (microstructures, mechanical, and physical) are influenced by the duration of milling of coconut shell particles. The modulus and flexural strength of the composite improved with an increase in the milling time. The density, thickness swelling, and porosity of the composite were also influenced by the milling times. The result suggested that the composite properties were influenced by the particle size of the coconut shell. The coconut shell nanoparticle composite can be used in the manufacturing of hybrid panels and board.
    Matched MeSH terms: Microscopy, Atomic Force
  19. Jiang H, Peng H, Guo H, Zeng Y, Li L, Zhang Y, et al.
    ACS Appl Mater Interfaces, 2020 Nov 18;12(46):51344-51356.
    PMID: 33146507 DOI: 10.1021/acsami.0c13139
    Thin-film lithium-ion microbatteries with a high energy density and long lifespan are exceedingly desired for developing self-powered integrated micro-nano devices and systems. However, exploring high-performance thin-film anodes still remains a challenge. Herein, a double-layer-structure diamond-like carbon-ZnS (DLC-ZnS) thin-film anode fabricated by radio frequency magnetron sputtering exhibits high specific capacity and good cycling stability up to 1000 cycles, superior to the pure ZnS thin-film anode. To understand the mechanism, the bimodal amplitude modulated-frequency modulated atomic force microscopy was used to explore the mechanical properties of the thin films, and the DLC layer shows significantly higher Young's modulus than the ZnS thin film. The DLC interface with a high Young's modulus can effectively buffer the mechanical stress originating from the huge volume changes of the ZnS layer during lithiation/delithiation processes; therefore, the DLC interface maintains the higher mechanical integrity of the DLC-ZnS thin film and improves the utilization of ZnS. In addition, the electrochemical kinetics of the DLC-ZnS and ZnS thin films were also investigated by electrochemical methods. Electrochemical impedance spectroscopy tests indicate the obstacle of the DLC interface to Li+ ion diffusion in the initial charge/discharge processes; however, the DLC-ZnS thin film exhibits lower total resistance than the ZnS thin film afterward. In particular, galvanostatic intermittent titration technique tests were performed to find out the differences between the two thin films during the galvanostatical charge/discharge processes. The results demonstrate the obviously enhanced conversion reaction reversibility and decreased alloy reaction polarization of the DLC-ZnS thin film; therefore, it delivers higher reversible capacity.
    Matched MeSH terms: Microscopy, Atomic Force
  20. Ahmad AL, Sugumaran J, Shoparwe NF
    Membranes (Basel), 2018 Dec 14;8(4).
    PMID: 30558199 DOI: 10.3390/membranes8040131
    In this study, the antifouling properties of polyethersulfone (PES) membranes blended with different amounts of ZnO nanoparticles and a fixed ratio of N-methyl-2-pyrrolidone (NMP)-acetone mixture as a solvent were investigated. The properties and performance of the fabricated membranes were examined in terms of hydrophilicity, porosity, pore size, surface and cross-section image using scanning electron microscopy (SEM), surface roughness using atomic force microscopy (AFM), pure water flux, and humic acid filtration. Addition of ZnO as expected was found to improve the hydrophilicity as well as to encourage pore formation. However, the agglomeration of ZnO at a higher concentration cannot be avoided even when dissolved in a mixed solvent. The presence of highly volatile acetone contributed to the tight skin layer of the membrane which shows remarkable antifouling ability with the highest flux recovery ratio and negligible irreversible fouling. ZnO NPs in acetone/NMP mixed solvent shows an improvement in flux and rejection, but, the fouling resistance was moderate compared to the pristine membrane.
    Matched MeSH terms: Microscopy, Atomic Force
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links