Displaying publications 41 - 60 of 405 in total

Abstract:
Sort:
  1. Troell M, Jonell M, Henriksson PJG
    Nat Ecol Evol, 2017 09;1(9):1224-1225.
    PMID: 29046558 DOI: 10.1038/s41559-017-0304-6
    Matched MeSH terms: Models, Biological
  2. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al.
    Cell Death Dis, 2016 12 08;7(12):e2513.
    PMID: 27929536 DOI: 10.1038/cddis.2016.374
    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.
    Matched MeSH terms: Models, Biological
  3. Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, et al.
    Plant Physiol, 2018 Feb;176(2):1233-1246.
    PMID: 29217593 DOI: 10.1104/pp.17.01213
    Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.
    Matched MeSH terms: Models, Biological*
  4. Tiang KL, Ooi EH
    Med Eng Phys, 2016 Aug;38(8):776-84.
    PMID: 27340100 DOI: 10.1016/j.medengphy.2016.05.011
    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis.
    Matched MeSH terms: Models, Biological
  5. Thoo YY, Abas F, Lai OM, Ho CW, Yin J, Hedegaard RV, et al.
    Food Chem, 2013 Jun 1;138(2-3):1215-9.
    PMID: 23411234 DOI: 10.1016/j.foodchem.2012.11.013
    The synergistic antioxidant effects of ethanolic extracts of Centella asiatica (CE), and α-tocopherol have been studied. The types of interactions exhibited by CE and α-tocopherol combined at different ratios were measured using three assays: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical-scavenging capacity, the β-carotene bleaching system and liposome peroxidation assays. Fixed-fraction isobolographic analysis was used to detect any inducement of the antioxidant activity compared with the individual activities of CE and α-tocopherol. Of all synergistic combinations of CE and α-tocopherol, only fraction 2/3 showed the synergistic combination that fits well in three different assays and can be explained by the regeneration of α-tocopherol by CE despite the interaction effect of β-carotene present in the analytical assay. This phenomenon involved complex interactions between CE and α-tocopherol to exhibit different degrees of interactions that eventually increased antioxidant activity.
    Matched MeSH terms: Models, Biological
  6. Thompson MS, Bajuri MN, Khayyeri H, Isaksson H
    Proc Inst Mech Eng H, 2017 May;231(5):369-377.
    PMID: 28427319 DOI: 10.1177/0954411917692010
    Tendons are adapted to carry large, repeated loads and are clinically important for the maintenance of musculoskeletal health in an increasing, actively ageing population, as well as in elite athletes. Tendons are known to adapt to mechanical loading. Also, their healing and disease processes are highly sensitive to mechanical load. Computational modelling approaches developed to capture this mechanobiological adaptation in tendons and other tissues have successfully addressed many important scientific and clinical issues. The aim of this review is to identify techniques and approaches that could be further developed to address tendon-related problems. Biomechanical models are identified that capture the multi-level aspects of tendon mechanics. Continuum whole tendon models, both phenomenological and microstructurally motivated, are important to estimate forces during locomotion activities. Fibril-level microstructural models are documented that can use these estimated forces to detail local mechanical parameters relevant to cell mechanotransduction. Cell-level models able to predict the response to such parameters are also described. A selection of updatable mechanobiological models is presented. These use mechanical signals, often continuum tissue level, along with rules for tissue change and have been applied successfully in many tissues to predict in vivo and in vitro outcomes. Signals may include scalars derived from the stress or strain tensors, or in poroelasticity also fluid velocity, while adaptation may be represented by changes to elastic modulus, permeability, fibril density or orientation. So far, only simple analytical approaches have been applied to tendon mechanobiology. With the development of sophisticated computational mechanobiological models in parallel with reporting more quantitative data from in vivo or clinical mechanobiological studies, for example, appropriate imaging, biochemical and histological data, this field offers huge potential for future development towards clinical applications.
    Matched MeSH terms: Models, Biological*
  7. Thanimalai S, Shafie AA, Hassali MA, Sinnadurai J
    Int J Clin Pharm, 2013 Oct;35(5):736-43.
    PMID: 23715759 DOI: 10.1007/s11096-013-9796-6
    BACKGROUNDS: Limited evidence is available regarding pharmacist managed anticoagulation clinic in the Southeast Asian region where there is marked difference in terms of care model, genetic composition and patient demographics.

    OBJECTIVES: This study aimed at comparing the anticoagulation clinic managed by the pharmacist with physician advisory and the usual medical care provided in Kuala Lumpur Hospital (KLH) in terms of anticoagulation control and adverse outcomes.

    SETTING: A 2,302 bedded government tertiary referral hospital in Malaysia.

    METHODS: A 6-month retrospective cohort study of the effectiveness of two models of anticoagulation care, the pharmacist managed anticoagulation clinic which is known as warfarin medication therapy adherence clinic (WMTAC) and usual medical clinic (UMC) in KLH was conducted, where a random number generator was used to recruit patients. The UMC patients received standard medical care where they are managed by rotational medical officers in the physicians' clinic. As for the WMTAC with physician advisory, the pharmacist will counsel and review the patients internationalised normalization ratio at each clinic visit and also adjust the patients' warfarin dose accordingly. Patients are referred to physicians if immediate attention is required.

    MAIN OUTCOME MEASURE: The main therapeutic outcome is time in therapeutic range (TTR) both actual and expanded TTR and thromboembolic and bleeding complications.

    RESULTS: Each of the WMTAC and usual medical care recruited 92 patients, which totals to 184 patients. The patient demographics in terms of age, race and indication of treatment were comparable. At the end of the 6 months follow-up, patients in the WMTAC group had significantly higher actual-TTR (65.1 vs. 48.3 %; p < 0.05) compared to those in usual medical care group. Rates of admission were 6.5 versus 28.2 events per 100 person-years for the WMTAC and UMC groups, respectively. Though the bleeding incidences were not significantly different, it was reduced.

    CONCLUSIONS: These findings will impact local warfarin patient management services and policies because there was no available evidence supporting the role of pharmacists in the management of warfarin patients prior to this study.
    Matched MeSH terms: Models, Biological*
  8. Thaler L, Reich GM, Zhang X, Wang D, Smith GE, Tao Z, et al.
    PLoS Comput Biol, 2017 Aug;13(8):e1005670.
    PMID: 28859082 DOI: 10.1371/journal.pcbi.1005670
    Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour.
    Matched MeSH terms: Models, Biological*
  9. Thakur N, Bailey D
    Microbes Infect, 2019;21(7):278-286.
    PMID: 30817995 DOI: 10.1016/j.micinf.2019.02.002
    Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.
    Matched MeSH terms: Models, Biological
  10. TermehYousefi A, Bagheri S, Shahnazar S, Rahman MH, Kadri NA
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:636-642.
    PMID: 26652417 DOI: 10.1016/j.msec.2015.10.041
    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney-Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.
    Matched MeSH terms: Models, Biological*
  11. Teoh YP, Don MM, Ujang S
    Biotechnol Prog, 2012 Jan-Feb;28(1):232-41.
    PMID: 21990033 DOI: 10.1002/btpr.714
    Two statistical tools, Plackett-Burman design (PBD) and Box-Behnken design (BBD) were used to optimize the mycelia growth of Schizophyllum commune with different nutrient components. Results showed that 32.92 g/L of biomass were produced using a medium consisting of 18.74 g/L yeast extract, 38.65 g/L glucose, and 0.59 g/L MgSO(4).7H(2)O. The experimental data fitted well with the model predicted values within 0.09 to 0.77% error. The biomass was also tested for antifungal activity against wood degrading fungi of rubberwood. Results showed that the minimum inhibitory concentration (MIC) values for antifungal activity range from 0.16 to 5.00 μg/μL. The GC-MS analysis indicated that this fungus produced several compounds, such as glycerin, 2(3H)-furanone, 5-heptyldihydro-, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, and triacetin.
    Matched MeSH terms: Models, Biological
  12. Teo J, Abbass HA
    Evol Comput, 2004;12(3):355-94.
    PMID: 15355605
    In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity.
    Matched MeSH terms: Models, Biological*
  13. Ten Bosch QA, Singh BK, Hassan MR, Chadee DD, Michael E
    PLoS Negl Trop Dis, 2016 05;10(5):e0004680.
    PMID: 27159023 DOI: 10.1371/journal.pntd.0004680
    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.
    Matched MeSH terms: Models, Biological*
  14. Teh LK, Langmia IM, Fazleen Haslinda MH, Ngow HA, Roziah MJ, Harun R, et al.
    J Clin Pharm Ther, 2012 Apr;37(2):232-6.
    PMID: 21507031 DOI: 10.1111/j.1365-2710.2011.01262.x
    Testing for cytochrome P450-2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) variant alleles is recommended by the FDA for dosing of warfarin. However, dose prediction models derived from data obtained in one population may not be applicable to another. We therefore studied the impact of genetic polymorphisms of CYP2C9 and VKORC1 on warfarin dose requirement in Malaysia.
    Matched MeSH terms: Models, Biological
  15. Teh AHT, Lee SM, Dykes GA
    PLoS One, 2019;14(4):e0215275.
    PMID: 30970009 DOI: 10.1371/journal.pone.0215275
    Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
    Matched MeSH terms: Models, Biological
  16. Tee SH
    PMID: 30594412 DOI: 10.1016/j.shpsc.2018.12.001
    It is commonly held that in vivo biological experimental models are concrete and non-fictional. This belief is primarily supported by the fact that in vivo studies involve biological models which are alive, and what is alive cannot be fictional. However, I argue that this is not always the case. The design of an experimental model could still render an in vivo model fictional because fictional elements and processes can be built into these in vivo experimental models. These fictional elements are essential parts of a credentialed fiction because the designs of in vivo experimental models are constrained by imaginability, conceivability, and credit-worthiness. Therefore, despite its fictionality, it is credible for an in vivo experimental model to stand in for the phenomenon of interest.
    Matched MeSH terms: Models, Biological*
  17. Tee SH
    PMID: 30318277 DOI: 10.1016/j.shpsc.2018.10.003
    Mechanism diagrams exhibit visually the organized parts and operations of a biological mechanism. A mechanism diagram can facilitate mechanistic research by providing a mechanistic explanation of the phenomenon of interest. Much research has been focusing on the mechanistic explanation and the explanatory mechanistic models. As a specific type of scientific diagram, a simple mechanism diagram can be explanatory by drawing on the rich explanatory resources of non-depicted background knowledge. The relationship between the visually depicted and the background knowledge is underexplored. It is unclear how the non-depicted background knowledge of a mechanism diagram contributes to providing a better-informed explanation of the phenomenon of interest in biological sciences. With the aim to explore this relationship, I articulate that a mechanism diagram provides a mechanistic explanation by a process called abstraction-by-aggregation. Through visual cues, the unified relevant background knowledge provides an epistemic access to a better-informed explanation.
    Matched MeSH terms: Models, Biological
  18. Teasdale JE, Hazell GG, Peachey AM, Sala-Newby GB, Hindmarch CC, McKay TR, et al.
    Sci Rep, 2017 Jan 06;7:39945.
    PMID: 28059114 DOI: 10.1038/srep39945
    Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases.
    Matched MeSH terms: Models, Biological
  19. Tani N, Tsumura Y, Kado T, Taguchi Y, Lee SL, Muhammad N, et al.
    Ann Bot, 2009 Dec;104(7):1421-34.
    PMID: 19808773 DOI: 10.1093/aob/mcp252
    BACKGROUND AND AIMS: Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

    METHODS: Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

    KEY RESULTS: The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

    CONCLUSIONS: The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.

    Matched MeSH terms: Models, Biological
  20. Tang PW, Choon YW, Mohamad MS, Deris S, Napis S
    J Biosci Bioeng, 2015 Mar;119(3):363-8.
    PMID: 25216804 DOI: 10.1016/j.jbiosc.2014.08.004
    Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.
    Matched MeSH terms: Models, Biological*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links