Displaying publications 41 - 60 of 405 in total

Abstract:
Sort:
  1. Che-Othman MH, Jacoby RP, Millar AH, Taylor NL
    New Phytol, 2020 02;225(3):1166-1180.
    PMID: 30688365 DOI: 10.1111/nph.15713
    Mitochondrial respiration and tricarboxylic acid (TCA) cycle activity are required during salt stress in plants to provide ATP and reductants for adaptive processes such as ion exclusion, compatible solute synthesis and reactive oxygen species (ROS) detoxification. However, there is a poor mechanistic understanding of how salinity affects mitochondrial metabolism, particularly respiratory substrate source. To determine the mechanism of respiratory changes under salt stress in wheat leaves, we conducted an integrated analysis of metabolite content, respiratory rate and targeted protein abundance measurements. Also, we investigated the direct effect of salt on mitochondrial enzyme activities. Salt-treated wheat leaves exhibit higher respiration rate and extensive metabolite changes. The activity of the TCA cycle enzymes pyruvate dehydrogenase complex and the 2-oxoglutarate dehydrogenase complex were shown to be directly salt-sensitive. Multiple lines of evidence showed that the γ-aminobutyric acid (GABA) shunt was activated under salt treatment. During salt exposure, key metabolic enzymes required for the cyclic operation of the TCA cycle are physiochemically inhibited by salt. This inhibition is overcome by increased GABA shunt activity, which provides an alternative carbon source for mitochondria that bypasses salt-sensitive enzymes, to facilitate the increased respiration of wheat leaves.
    Matched MeSH terms: Models, Biological
  2. Huang R, Pimm SL, Giri C
    Conserv Biol, 2020 02;34(1):266-275.
    PMID: 31183898 DOI: 10.1111/cobi.13364
    As a landscape becomes increasingly fragmented through habitat loss, the individual patches become smaller and more isolated and thus less likely to sustain a local population. Metapopulation theory is appropriate for analyzing fragmented landscapes because it combines empirical landscape features with species-specific information to produce direct information on population extinction risks. This approach contrasts with descriptions of habitat fragments, which provide only indirect information on risk. Combining a spatially explicit metapopulation model with empirical data on endemic species' ranges and maps of habitat cover, we calculated the metapopulation capacity-a measure of a landscape's ability to sustain a metapopulation. Mangroves provide an ideal model landscape because they are of conservation concern and their patch boundaries are easily delineated. For 2000-20015, we calculated global metapopulation capacity for 99 metapopulations of 32 different bird species endemic to mangroves. Northern Australia and Southeast Asia had the highest richness of mangrove endemic birds. The Caribbean, Pacific coast of Central America, Madagascar, Borneo, and isolated patches in Southeast Asia in Myanmar and Malaysia had the highest metapopulation losses. Regions with the highest loss of habitat area were not necessarily those with the highest loss of metapopulation capacity. Often, it was not a matter of how much, but how the habitat was lost. Our method can be used by managers to evaluate and prioritize a landscape for metapopulation persistence.
    Matched MeSH terms: Models, Biological*
  3. Jabaraj DJ
    Ann Biomed Eng, 2020 Jan;48(1):393-402.
    PMID: 31531790 DOI: 10.1007/s10439-019-02356-4
    We examine the low-frequency limit of hearing of the mammalian ear through the analytical modelling of the natural frequency of the tympanic membrane. The resulting equation of the natural frequency of the modelled tympanic membrane is numerically verified against previous theoretical studies, and is statistically validated against the experimental data on the low-frequency limit of hearing. By utilizing the Wilcoxon signed-rank test; W-values of 29 (p value = 0.25014) and 23 (p value = 0.11642) are respectively obtained for the 0.2% and 0.3% prestrain (at 5% significance level for sample size of 13). We fail to reject the null hypothesis as the W-values are within the critical values of the test statistics, and therefore conclude that the tympanic membrane acts as a low-frequency limiter of acoustic stimulus. Based on our study, we can predict the low-frequency limit of hearing in mammals (e.g., for the whale as 3.6 Hz and for the zebra as 44.0 Hz).
    Matched MeSH terms: Models, Biological*
  4. Mohd Yusoff MI
    Comput Math Methods Med, 2020;2020:9328414.
    PMID: 33224268 DOI: 10.1155/2020/9328414
    Researchers used a hybrid model (a combination of health resource demand model and disease transmission model), Bayesian model, and susceptible-exposed-infectious-removed (SEIR) model to predict health service utilization and deaths and mixed-effect nonlinear regression. Further, they used the mixture model to predict the number of confirmed cases and deaths or to predict when the curve would flatten. In this article, we show, through scenarios developed using system dynamics methodology, besides close to real-world results, the detrimental effects of ignoring social distancing guidelines (in terms of the number of people infected, which decreased as the percentage of noncompliance decreased).
    Matched MeSH terms: Models, Biological*
  5. Gnanasegaran N, Thimiri Govinda Raj DB, Arumugam S
    Methods Mol Biol, 2020;2125:193-196.
    PMID: 31489601 DOI: 10.1007/7651_2019_261
    Several research groups have utilized dental pulp stem cells for numerous studies as treatment modality for Parkinson's disease (PD). However, the roles of dental pulp stem cells in governing the Parkinson's disease inflammatory microenvironment remain to be evaluated. In this article, we elaborate the method where we can investigate the effects of dental pulp stem cells on neurons and microglia in an in vitro inflammatory microenvironment.
    Matched MeSH terms: Models, Biological*
  6. MOE SHWE SIN, SHANGKARI A/P WASU DAVEN
    MyJurnal
    Deforestation is one of the incredible difficulties confronting mankind. The extraction of woods remains one of the main drivers of deforestation in Malaysia. Relatively, rising in timber values may lead to enlarge in the net advantages of clearing land. Thus, this study is written to assess the process and underlying causes of forest cover change in Malaysia from 1997 to 2016. After assessed the discusses it on the impact of direct drivers with different management scenarios on deforestation in Malaysia. The research design, data, and method also performed by using System Simulation Model. Model validation and sensitivity tests was carried out after the simulation model is implemented to check the correctness in line with the real system. The simulation analysis was carried out with three different simulation periods together with the impact of two main policies: (1) controlling threshold profit; (2) discounted rate. The result of the study indicates that the most suitable policy combination to manage the deforestation is scenario 2 (policy 2B) with the RM650 per/ha threshold profit coupled with interest rate r=4% within 50years period.
    Matched MeSH terms: Models, Biological
  7. Albitar O, Harun SN, Zainal H, Ibrahim B, Sheikh Ghadzi SM
    Biomed Res Int, 2020;2020:9872936.
    PMID: 31998804 DOI: 10.1155/2020/9872936
    Background and Objective: Clozapine is a second-generation antipsychotic drug that is considered the most effective treatment for refractory schizophrenia. Several clozapine population pharmacokinetic models have been introduced in the last decades. Thus, a systematic review was performed (i) to compare published pharmacokinetics models and (ii) to summarize and explore identified covariates influencing the clozapine pharmacokinetics models.

    Methods: A search of publications for population pharmacokinetic analyses of clozapine either in healthy volunteers or patients from inception to April 2019 was conducted in PubMed and SCOPUS databases. Reviews, methodology articles, in vitro and animal studies, and noncompartmental analysis were excluded.

    Results: Twelve studies were included in this review. Clozapine pharmacokinetics was described as one-compartment with first-order absorption and elimination in most of the studies. Significant interindividual variations of clozapine pharmacokinetic parameters were found in most of the included studies. Age, sex, smoking status, and cytochrome P450 1A2 were found to be the most common identified covariates affecting these parameters. External validation was only performed in one study to determine the predictive performance of the models.

    Conclusions: Large pharmacokinetic variability remains despite the inclusion of several covariates. This can be improved by including other potential factors such as genetic polymorphisms, metabolic factors, and significant drug-drug interactions in a well-designed population pharmacokinetic model in the future, taking into account the incorporation of larger sample size and more stringent sampling strategy. External validation should also be performed to the previously published models to compare their predictive performances.

    Matched MeSH terms: Models, Biological*
  8. Billah MA, Miah MM, Khan MN
    PLoS One, 2020;15(11):e0242128.
    PMID: 33175914 DOI: 10.1371/journal.pone.0242128
    BACKGROUND: The coronavirus (SARS-COV-2) is now a global concern because of its higher transmission capacity and associated adverse consequences including death. The reproductive number of coronavirus provides an estimate of the possible extent of the transmission. This study aims to provide a summary reproductive number of coronavirus based on available global level evidence.

    METHODS: A total of three databases were searched on September 15, 2020: PubMed, Web of Science, and Science Direct. The searches were conducted using a pre-specified search strategy to record studies reported the reproductive number of coronavirus from its inception in December 2019. It includes keywords of coronavirus and its reproductive number, which were combined using the Boolean operators (AND, OR). Based on the included studies, we estimated a summary reproductive number by using the meta-analysis. We used narrative synthesis to explain the results of the studies where the reproductive number was reported, however, were not possible to include in the meta-analysis because of the lack of data (mostly due to confidence interval was not reported).

    RESULTS: Total of 42 studies included in this review whereas 29 of them were included in the meta-analysis. The estimated summary reproductive number was 2.87 (95% CI, 2.39-3.44). We found evidence of very high heterogeneity (99.5%) of the reproductive number reported in the included studies. Our sub-group analysis was found the significant variations of reproductive number across the country for which it was estimated, method and model that were used to estimate the reproductive number, number of case that was considered to estimate the reproductive number, and the type of reproductive number that was estimated. The highest reproductive number was reported for the Diamond Princess Cruise Ship in Japan (14.8). In the country-level, the higher reproductive number was reported for France (R, 6.32, 95% CI, 5.72-6.99) following Germany (R, 6.07, 95% CI, 5.51-6.69) and Spain (R, 3.56, 95% CI, 1.62-7.82). The higher reproductive number was reported if it was estimated by using the Markov Chain Monte Carlo method (MCMC) method and the Epidemic curve model. We also reported significant heterogeneity of the type of reproductive number- a high-value reported if it was the time-dependent reproductive number.

    CONCLUSION: The estimated summary reproductive number indicates an exponential increase of coronavirus infection in the coming days. Comprehensive policies and programs are important to reduce new infections as well as the associated adverse consequences including death.

    Matched MeSH terms: Models, Biological
  9. Koda H, Arai Z, Matsuda I
    PLoS One, 2020;15(12):e0243173.
    PMID: 33270712 DOI: 10.1371/journal.pone.0243173
    Understanding social organization is fundamental for the analysis of animal societies. In this study, animal single-file movement data-serialized order movements generated by simple bottom-up rules of collective movements-are informative and effective observations for the reconstruction of animal social structures using agent-based models. For simulation, artificial 2-dimensional spatial distributions were prepared with the simple assumption of clustered structures of a group. Animals in the group are either independent or dependent agents. Independent agents distribute spatially independently each one another, while dependent agents distribute depending on the distribution of independent agents. Artificial agent spatial distributions aim to represent clustered structures of agent locations-a coupling of "core" or "keystone" subjects and "subordinate" or "follower" subjects. Collective movements were simulated following two simple rules, 1) initiators of the movement are randomly chosen, and 2) the next moving agent is always the nearest neighbor of the last moving agents, generating "single-file movement" data. Finally, social networks were visualized, and clustered structures reconstructed using a recent major social network analysis (SNA) algorithm, the Louvain algorithm, for rapid unfolding of communities in large networks. Simulations revealed possible reconstruction of clustered social structures using relatively minor observations of single-file movement, suggesting possible application of single-file movement observations for SNA use in field investigations of wild animals.
    Matched MeSH terms: Models, Biological
  10. Azman KF, Zakaria R
    Biogerontology, 2019 12;20(6):763-782.
    PMID: 31538262 DOI: 10.1007/s10522-019-09837-y
    To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
    Matched MeSH terms: Models, Biological*
  11. Abdullahi A, Shohaimi S, Kilicman A, Ibrahim MH
    J Biol Dyn, 2019 12;13(1):345-361.
    PMID: 31056007 DOI: 10.1080/17513758.2019.1605003
    Seed dispersals deal with complex systems through which the data collected using advanced seed tracking facilities pose challenges to conventional approaches, such as empirical and deterministic models. The use of stochastic models in current seed dispersal studies is encouraged. This review describes three existing stochastic models: the birth-death process (BDP), a 2 dimensional (
    2

    D

    ) symmetric random walks and a
    2

    D

    intermittent walks. The three models possess Markovian property, which make them flexible for studying natural phenomena. Only a few of applications in ecology are found in seed dispersals. The review illustrates how the models are to be used in seed dispersals context. Using the nonlinear BDP, we formulate the individual-based models for two competing plant species while the cover time model is formulated by the symmetric and intermittent random walks. We also show that these three stochastic models can be formulated using the Gillespie algorithm. The full cover time obtained by the symmetric random walks can approximate the Gumbel distribution pattern as the other searching strategies do. We suggest that the applications of these models in seed dispersals may lead to understanding of many complex systems, such as the seed removal experiments and behaviour of foraging agents, among others.
    Matched MeSH terms: Models, Biological*
  12. Daud KM, Mohamad MS, Zakaria Z, Hassan R, Shah ZA, Deris S, et al.
    Comput Biol Med, 2019 10;113:103390.
    PMID: 31450056 DOI: 10.1016/j.compbiomed.2019.103390
    Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate. However, the final goal is to increase the production rate. Furthermore, they produce one single solution, though in reality, cells do not focus on one objective and they need to consider various different competing objectives. In this work, a method, termed ndsDSAFBA (non-dominated sorting Differential Search Algorithm and Flux Balance Analysis), has been developed to find the reaction knockouts involved in maximising the production rate and growth rate of the mutant, by incorporating Pareto dominance concepts. The proposed ndsDSAFBA method was validated using three genome-scale metabolic models. We obtained a set of non-dominated solutions, with each solution representing a different mutant strain. The results obtained were compared with the single objective optimisation (SOO) and multi-objective optimisation (MOO) methods. The results demonstrate that ndsDSAFBA is better than the other methods in terms of production rate and growth rate.
    Matched MeSH terms: Models, Biological*
  13. Faizal WM, Ghazali NNN, Badruddin IA, Zainon MZ, Yazid AA, Ali MAB, et al.
    Comput Methods Programs Biomed, 2019 Oct;180:105036.
    PMID: 31430594 DOI: 10.1016/j.cmpb.2019.105036
    Obstructive sleep apnea is one of the most common breathing disorders. Undiagnosed sleep apnea is a hidden health crisis to the patient and it could raise the risk of heart diseases, high blood pressure, depression and diabetes. The throat muscle (i.e., tongue and soft palate) relax narrows the airway and causes the blockage of the airway in breathing. To understand this phenomenon computational fluid dynamics method has emerged as a handy tool to conduct the modeling and analysis of airflow characteristics. The comprehensive fluid-structure interaction method provides the realistic visualization of the airflow and interaction with the throat muscle. Thus, this paper reviews the scientific work related to the fluid-structure interaction (FSI) for the evaluation of obstructive sleep apnea, using computational techniques. In total 102 articles were analyzed, each article was evaluated based on the elements related with fluid-structure interaction of sleep apnea via computational techniques. In this review, the significance of FSI for the evaluation of obstructive sleep apnea has been critically examined. Then the flow properties, boundary conditions and validation of the model are given due consideration to present a broad perspective of CFD being applied to study sleep apnea. Finally, the challenges of FSI simulation methods are also highlighted in this article.
    Matched MeSH terms: Models, Biological
  14. Glazier PS, Mehdizadeh S
    J Biomech, 2019 Sep 20;94:1-4.
    PMID: 31427095 DOI: 10.1016/j.jbiomech.2019.07.044
    The development of methods that can identify athlete-specific optimum sports techniques-arguably the holy grail of sports biomechanics-is one of the greatest challenges for researchers in the field. This 'perspectives article' critically examines, from a dynamical systems theoretical standpoint, the claim that athlete-specific optimum sports techniques can be identified through biomechanical optimisation modelling. To identify athlete-specific optimum sports techniques, dynamical systems theory suggests that a representative set of organismic constraints, along with their non-linear characteristics, needs to be identified and incorporated into the mathematical model of the athlete. However, whether the athlete will be able to adopt, and reliably reproduce, his/her predicted optimum technique will largely be dependent on his/her intrinsic dynamics. If the attractor valley corresponding to the existing technique is deep, or if the attractor valleys corresponding to the existing technique and the predicted optimum technique are in different topographical regions of the dynamic landscape, technical modifications may be challenging or impossible to reliably implement even after extended practice. The attractor layout defining the intrinsic dynamics of the athlete, therefore, needs to be determined to establish the likelihood of the predicted optimum technique being reliably attainable by the athlete. Given the limited set of organismic constraints typically used in mathematical models of athletes, combined with the methodological challenges associated with mapping the attractor layout of an athlete, it seems unlikely that athlete-specific optimum sports techniques will be identifiable through biomechanical optimisation modelling for the majority of sports skills in the near future.
    Matched MeSH terms: Models, Biological*
  15. Sudi SB, Tanaka T, Oda S, Nishiyama K, Nishimura A, Sunggip C, et al.
    Sci Rep, 2019 07 05;9(1):9785.
    PMID: 31278358 DOI: 10.1038/s41598-019-46252-2
    Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5'-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.
    Matched MeSH terms: Models, Biological
  16. Ang TK, Safuan HM, Sidhu HS, Jovanoski Z, Towers IN
    Bull Math Biol, 2019 07;81(7):2748-2767.
    PMID: 31201660 DOI: 10.1007/s11538-019-00627-8
    The present paper studies a predator-prey fishery model which incorporates the independent harvesting strategies and nonlinear impact of an anthropogenic toxicant. Both fish populations are harvested with different harvesting efforts, and the cases for the presence and non-presence of harvesting effort are discussed. The prey fish population is assumed to be infected by the toxicant directly which causes indirect infection to predator fish population through the feeding process. Each equilibrium of the proposed system is examined by analyzing the respective local stability properties. Dynamical behavior and bifurcations are studied with the assistance of threshold conditions influencing the persistence and extinction of both predator and prey. Bionomic equilibrium solutions for three possible cases are investigated with certain restrictions. Optimal harvesting policy is explored by utilizing the Pontryagin's Maximum Principle to optimize the profit while maintaining the sustainability of the marine ecosystem. Bifurcation analysis showed that the harvesting parameters are the key elements causing fishery extinction. Numerical simulations of bionomic and optimal equilibrium solutions showed that the presence of toxicant has a detrimental effect on the fish populations.
    Matched MeSH terms: Models, Biological*
  17. Kamaruzaman L, Mohd R, Zaki FM, Hod R, Aziz AA
    Saudi J Kidney Dis Transpl, 2019 6 30;30(3):587-596.
    PMID: 31249222 DOI: 10.4103/1319-2442.261331
    Estimation of glomerular filtration rate (GFR) in renal transplant patients is often assessed by application of creatinine-based equations. The aim was to correlate the estimated GFR (eGFR) using creatinine-based equations [Cockroft-Gault, Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Nankivell] with gold standard 51Cr-EDTA in kidney transplant patients in the Asian population. This is a single-center, cross-sectional study involving adult renal transplant patients. Background demographic data, medications, office blood pressure, and baseline investigations were taken. Correlations between measured GFR and eGFR were analyzed and Pearson's correlation coefficients, bias, and accuracy were assessed. Thirty-seven renal transplant patients with a mean age of 46 ± 13 years were recruited. Majority were Chinese (68%), Malay (24%), and Indian (8%). The median duration of the transplant was 84 (interquartile range 60,132) months. The mean measured GFR was 71 ± 21 mL/min/1.73 m2. Cockroft-Gault and CKD-EPI has the best correlation with 51Cr-EDTA with Pearson correlation coefficients of 0.733 (P <0.001) and 0.711 (P < 0.001), respectively. All formulae showed >80% accuracy with eGFR lies between 30% of the measured value. CKD-EPI and MDRD had the greatest accuracy with 89.2% each. Clinician may use any of these three serum creatinine-based equations to estimate GFR in kidney transplant recipients.
    Matched MeSH terms: Models, Biological*
  18. Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al.
    Clin Pharmacokinet, 2019 06;58(6):767-780.
    PMID: 30656565 DOI: 10.1007/s40262-018-0727-5
    BACKGROUND AND OBJECTIVES: Uncertainty exists regarding the optimal dosing regimen for vancomycin in different patient populations, leading to a plethora of subgroup-specific pharmacokinetic models and derived dosing regimens. We aimed to investigate whether a single model for vancomycin could be developed based on a broad dataset covering the extremes of patient characteristics. Furthermore, as a benchmark for current dosing recommendations, we evaluated and optimised the expected vancomycin exposure throughout life and for specific patient subgroups.

    METHODS: A pooled population-pharmacokinetic model was built in NONMEM based on data from 14 different studies in different patient populations. Steady-state exposure was simulated and compared across patient subgroups for two US Food and Drug Administration/European Medicines Agency-approved drug labels and optimised doses were derived.

    RESULTS: The final model uses postmenstrual age, weight and serum creatinine as covariates. A 35-year-old, 70-kg patient with a serum creatinine level of 0.83 mg dL-1 (73.4 µmol L-1) has a V1, V2, CL and Q2 of 42.9 L, 41.7 L, 4.10 L h-1 and 3.22 L h-1. Clearance matures with age, reaching 50% of the maximal value (5.31 L h-1 70 kg-1) at 46.4 weeks postmenstrual age then declines with age to 50% at 61.6 years. Current dosing guidelines failed to achieve satisfactory steady-state exposure across patient subgroups. After optimisation, increased doses for the Food and Drug Administration label achieve consistent target attainment with minimal (± 20%) risk of under- and over-dosing across patient subgroups.

    CONCLUSIONS: A population model was developed that is useful for further development of age and kidney function-stratified dosing regimens of vancomycin and for individualisation of treatment through therapeutic drug monitoring and Bayesian forecasting.

    Matched MeSH terms: Models, Biological*
  19. Gandola AE, Dainelli L, Zimmermann D, Dahlui M, Detzel P
    Nutrients, 2019 May 30;11(6).
    PMID: 31151244 DOI: 10.3390/nu11061235
    This study evaluated the cost-effectiveness of the consumption of a milk powder product fortified with potassium (+1050.28 mg/day) and phytosterols (+1200 mg/day) to lower systolic blood pressure and low-density lipoprotein cholesterol, respectively, and, therefore, the risk of myocardial infarction (MI) and stroke among the 35-75-year-old population in Malaysia. A Markov model was created against a do-nothing option, from a governmental perspective, and with a time horizon of 40 years. Different data sources, encompassing clinical studies, practice guidelines, grey literature, and statistical yearbooks, were used. Sensitivity analyses were performed to evaluate the impact of uncertainty on the base case estimates. With an incremental cost-effectiveness ratio equal to international dollars (int$) 22,518.03 per quality-adjusted life-years gained, the intervention can be classified as very cost-effective. If adopted nationwide, it would help prevent at least 13,400 MIs, 30,500 strokes, and more than 10,600 and 17,100 MI- and stroke-related deaths. The discounted cost savings generated for the health care system by those who consume the fortified milk powder would amount to int$8.1 per person, corresponding to 0.7% of the total yearly health expenditure per capita. Sensitivity analyses confirmed the robustness of the results. Together with other preventive interventions, the consumption of milk powder fortified with potassium and phytosterols represents a cost-effective strategy to attenuate the rapid increase in cardiovascular burden in Malaysia.
    Matched MeSH terms: Models, Biological*
  20. Lee JJJ, Loh WP
    Comput Biol Med, 2019 05;108:213-222.
    PMID: 31005013 DOI: 10.1016/j.compbiomed.2019.04.003
    Good badminton lunge skills have been quantitatively described using biomechanical attributes at both static and dynamic phases. The measurement of badminton lunge attributes has often been complicated by various experimental protocols used. No review article has considered or critically reviewed the attributes that align with badminton lunge performance. This paper, hence, presents a review of badminton lunge postures governed by various determinant attributes. This review was performed by involving a number of relevant search engines. A total of 21 articles that fulfilled the predefined inclusion criteria were analysed. The lunge determinant attributes, such as time, lunge distance, plantar, ground reaction force, joint, dynamic balance and muscle attributes, had been examined. Contradictory findings in the dynamic balance attributes, specifically the relative displacement between the centre of mass and the centre of pressure, are presented in this paper. The findings showed that time, lunge distance and ground reaction force determined lunge performance. On the other hand, plantar, joint, dynamic balance and muscle attributes appeared useful in minimising injuries to ensure efficient lunge performance.
    Matched MeSH terms: Models, Biological*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links