Displaying publications 41 - 60 of 67 in total

Abstract:
Sort:
  1. Subramani T, Rathnavelu V, Alitheen NB, Padmanabhan P
    Int J Mol Med, 2015 May;35(5):1151-8.
    PMID: 25812632 DOI: 10.3892/ijmm.2015.2144
    Gingival overgrowth is an undesirable outcome of systemic medication and is evidenced by the accretion of collagenous components in gingival connective tissues along with diverse degrees of inflammation. Phenytoin therapy has been found to induce the most fibrotic lesions in gingiva, cyclosporine caused the least fibrotic lesions, and nifedipine induced intermediate fibrosis in drug‑induced gingival overgrowth. In drug‑induced gingival overgrowth, efficient oral hygiene is compromised and has negative consequences for the systemic health of the patients. Toll‑like receptors (TLRs) are involved in the effective recognition of microbial agents and play a vital role in innate immunity and inflammatory signaling responses. TLRs stimulate fibrosis and tissue repairs in several settings, although with evident differences between organs. In particular, TLRs exert a distinct effect on fibrosis in organs with greater exposure to TLR ligands, such as the gingiva. Cumulative evidence from diverse sources suggested that TLRs can affect gingival overgrowth in several ways. Numerous studies have demonstrated the expression of TLRs in gingival tissues and suggested its potential role in gingival inflammation, cell proliferation and synthesis of the extracellular matrix which is crucial to the development of gingival overgrowth. In the present review, we assessed the role of TLRs on individual cell populations in gingival tissues that contribute to the progression of gingival inflammation, and the involvement of TLRs in the development of gingival overgrowth. These observations suggest that TLRs provide new insight into the connection among infection, inflammation, drugs and gingival fibrosis, and are therefore efficient therapeutic target molecules. We hypothesize that TLRs are critical for the development and progression of gingival overgrowth, and thus blocking TLR expression may serve as a novel target for antifibrotic therapy.
    Matched MeSH terms: Molecular Targeted Therapy
  2. Chai AWY, Lim KP, Cheong SC
    Semin Cancer Biol, 2020 04;61:71-83.
    PMID: 31542510 DOI: 10.1016/j.semcancer.2019.09.011
    Oral squamous cell carcinomas (OSCC) are a heterogeneous group of cancers arising from the mucosal lining of the oral cavity. A majority of these cancers are associated with lifestyle risk habits including smoking, excessive alcohol consumption and betel quid chewing. Cetuximab, targeting the epidermal growth factor receptor was approved for the treatment of OSCC in 2006, and remains the only molecular targeted therapy available for OSCC. Here, we reviewed the current findings from genomic analyses of OSCC and discuss how these studies inform on the biological mechanisms underlying OSCC. Exome sequencing revealed that the significantly mutated genes are mainly tumour suppressors. Mutations in FAT1, CASP8, CDKN2A, and NOTCH1 are more frequently found in OSCC when compared to non-OSCC head and neck cancers and other squamous cell carcinomas, and HRAS and PIK3CA are the only significantly mutated oncogenes. The distribution of these mutations also differs in populations with distinct risk habits. Gene expression-based molecular classification showed that OSCC can be divided into distinct subtypes and these have a preferential response to different types of therapies, suggesting that these classifications could have clinical implications. More recently, with the approval of checkpoint inhibitors for the treatment of cancers including OSCC, genomics studies also dissected the genetic signatures of the immune compartment to delineate immune-active and -exhausted subtypes that could inform on the immune status of OSCC patients and guide the development of novel therapies to improve response to immunotherapy. Taken together, genomics studies are informing on the biology of both the epithelial and stromal compartments underlying OSCC development, and we discuss the opportunities and challenges in using these to derive clinical benefit for OSCC patients.
    Matched MeSH terms: Molecular Targeted Therapy
  3. Pushpamalar J, Sathasivam T, Gugler MC
    Methods Mol Biol, 2021;2211:171-182.
    PMID: 33336277 DOI: 10.1007/978-1-0716-0943-9_12
    Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.
    Matched MeSH terms: Molecular Targeted Therapy
  4. Liam CK, Mallawathantri S, Fong KM
    Respirology, 2020 09;25(9):933-943.
    PMID: 32335992 DOI: 10.1111/resp.13823
    Molecular biomarker testing of advanced-stage NSCLC is now considered standard of care and part of the diagnostic algorithm to identify subsets of patients for molecular-targeted treatment. Tumour tissue biopsy is essential for an accurate initial diagnosis, determination of the histological subtype and for molecular testing. With the increasing use of small biopsies and cytological specimens for diagnosis and the need to identify an increasing number of predictive biomarkers, proper management of the limited amount of sampling materials available is important. Many patients with advanced NSCLC do not have enough tissue for molecular testing and/or do not have a biopsy-amenable lesion and/or do not want to go through a repeat biopsy given the potential risks. Molecular testing can be difficult or impossible if the sparse material from very small biopsy specimens has already been exhausted for routine diagnostic purposes. A limited diagnostic workup is recommended to preserve sufficient tissue for biomarker testing. In addition, tumour biopsies are limited by tumour heterogeneity, particularly in the setting of disease resistance, and thus may yield false-negative results. Hence, there have been considerable efforts to determine if liquid biopsy in which molecular alterations can be non-invasively identified in plasma cell-free ctDNA, a potential surrogate for the entire tumour genome, can overcome the issues with tissue biopsies and replace the need for the latter.
    Matched MeSH terms: Molecular Targeted Therapy
  5. Aggarwal T, Wadhwa R, Gupta R, Paudel KR, Collet T, Chellappan DK, et al.
    PMID: 32342824 DOI: 10.2174/1871530320666200428113051
    Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.
    Matched MeSH terms: Molecular Targeted Therapy
  6. Sulaiman I, Lim JC, Soo HL, Stanslas J
    Pulm Pharmacol Ther, 2016 Oct;40:52-68.
    PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005
    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
    Matched MeSH terms: Molecular Targeted Therapy
  7. Mohamed RMP, Kumar J, Yap E, Mohamed IN, Sidi H, Adam RL, et al.
    Curr Drug Targets, 2019;20(2):158-165.
    PMID: 28641520 DOI: 10.2174/1389450118666170622092824
    Memories associated with substance use disorders, or substance-associated cues increase the likelihood of craving and relapse during abstinence. There is a growing consensus that manipulation of synaptic plasticity may reduce the strength of substance abuse-related memories. On the biological front, there are new insights that suggest memories associated with substance use disorder may follow unique neurobiological pathways that render them more accessible to pharmacological intervention. In parallel to this, research in neurochemistry has identified several potential candidate molecules that could influence the formation and maintenance of long-term memory. Drugs that target these molecules (blebbistatin, isradipine and zeta inhibitory peptide) have shown promise at the preclinical stage. In this review, we shall provide an overview of the evolving understanding on the biochemical mechanisms involved in memory formation and expound on the premise that substance use disorder is a learning disorder.
    Matched MeSH terms: Molecular Targeted Therapy
  8. Tan YJ, Lee YT, Yeong KY, Petersen SH, Kono K, Tan SC, et al.
    Future Med Chem, 2018 Sep 01;10(17):2039-2057.
    PMID: 30066578 DOI: 10.4155/fmc-2018-0052
    AIM: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells.

    MATERIALS & METHODS: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways.

    RESULTS & CONCLUSION: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.

    Matched MeSH terms: Molecular Targeted Therapy
  9. Mai CW, Chung FF, Leong CO
    Curr Drug Targets, 2017;18(11):1259-1268.
    PMID: 27993111 DOI: 10.2174/1389450117666161216125344
    BACKGROUND: Recent reports indicate that the tumor microenvironment plays a pivotal role in cancer development and progression, leading to a paradigm shift in the way cancer is studied and targeted. In contrast to traditional approaches, where only tumor cells are targeted for the treatment, an emerging approach is to develop therapeutics which target the tumor microenvironment while complementing or enhancing current treatments. Legumain (LGMN) is a newly identified target which is highly expressed in the tumor microenvironment and in tumor cells, and holds potential both as a biomarker and as a therapeutic target.

    CONCLUSION: This review will be the first to summarize the expression of LGMN in common cancers, as well as its roles in tumorigenesis and metastasis. This review also discusses the current developments and future prospects of targeting LGMN through the development of DNA vaccines, azopeptides, small molecule inhibitors and LGMN activated prodrugs, highlighting the potential of LGMN as a target for cancer therapeutics.

    Matched MeSH terms: Molecular Targeted Therapy
  10. Jeevaratnam K, Chadda KR, Huang CL, Camm AJ
    J Cardiovasc Pharmacol Ther, 2018 03;23(2):119-129.
    PMID: 28946759 DOI: 10.1177/1074248417729880
    The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K+ channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K+ channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them.
    Matched MeSH terms: Molecular Targeted Therapy
  11. Shanmugam MK, Lee JH, Chai EZ, Kanchi MM, Kar S, Arfuso F, et al.
    Semin Cancer Biol, 2016 10;40-41:35-47.
    PMID: 27038646 DOI: 10.1016/j.semcancer.2016.03.005
    The association between chronic inflammation and cancer development has been well documented. One of the major obstacles in cancer treatment is the persistent autocrine and paracrine activation of pro-inflammatory transcription factors such as nuclear factor-κB, signal transducer and activator of transcription 3, activator protein 1, fork head box protein M1, and hypoxia-inducible factor 1α in a wide variety of tumor cell lines and patient specimens. This, in turn, leads to an accelerated production of cellular adhesion molecules, inflammatory cytokines, chemokines, anti-apoptotic molecules, and inducible nitric oxide synthase. Numerous medicinal plant-derived compounds have made a tremendous impact in drug discovery research endeavors, and have been reported to modulate the activation of diverse oncogenic transcription factors in various tumor models. Moreover, novel therapeutic combinations of standard chemotherapeutic drugs with these agents have significantly improved patient survival by making cancer cells more susceptible to chemotherapy and radiotherapy. In this review, we critically analyze the existing literature on the modulation of diverse transcription factors by various natural compounds and provide views on new directions for accelerating the discovery of novel drug candidates derived from Mother Nature.
    Matched MeSH terms: Molecular Targeted Therapy
  12. Hasan WNW, Chin KY, Jolly JJ, Ghafar NA, Soelaiman IN
    PMID: 29683099 DOI: 10.2174/1871530318666180423122409
    BACKGROUND: Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling.

    OBJECTIVE: This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential.

    DISCUSSION: Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans.

    CONCLUSION: Mevalonate pathway can be exploited to develop effective antiosteoporosis agents.

    Matched MeSH terms: Molecular Targeted Therapy
  13. Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, et al.
    Molecules, 2020 Nov 24;25(23).
    PMID: 33255206 DOI: 10.3390/molecules25235491
    In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
    Matched MeSH terms: Molecular Targeted Therapy
  14. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Molecular Targeted Therapy
  15. Tan WS, Ho KL
    World J Gastroenterol, 2014 Sep 7;20(33):11650-70.
    PMID: 25206271 DOI: 10.3748/wjg.v20.i33.11650
    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20(th) century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases.
    Matched MeSH terms: Molecular Targeted Therapy
  16. Musa M, Ali A
    Future Oncol, 2020 Oct;16(29):2329-2344.
    PMID: 32687721 DOI: 10.2217/fon-2020-0384
    Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
    Matched MeSH terms: Molecular Targeted Therapy
  17. Maniam S, Maniam S
    Int J Mol Sci, 2021 Sep 08;22(18).
    PMID: 34575883 DOI: 10.3390/ijms22189722
    Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
    Matched MeSH terms: Molecular Targeted Therapy
  18. Vasaikar S, Tsipras G, Landázuri N, Costa H, Wilhelmi V, Scicluna P, et al.
    BMC Cancer, 2018 02 06;18(1):154.
    PMID: 29409474 DOI: 10.1186/s12885-018-4012-7
    BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.

    METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.

    RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.

    CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

    Matched MeSH terms: Molecular Targeted Therapy
  19. Che Nordin MA, Teow SY
    Molecules, 2018 Feb 06;23(2).
    PMID: 29415435 DOI: 10.3390/molecules23020335
    The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
    Matched MeSH terms: Molecular Targeted Therapy
  20. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Molecular Targeted Therapy/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links