Displaying publications 41 - 60 of 216 in total

Abstract:
Sort:
  1. Lo S, Fauzi MB
    Pharmaceutics, 2021 Feb 28;13(3).
    PMID: 33670973 DOI: 10.3390/pharmaceutics13030316
    Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes.
    Matched MeSH terms: Nanotechnology
  2. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al.
    Pharmaceuticals (Basel), 2021 Apr 16;14(4).
    PMID: 33923474 DOI: 10.3390/ph14040369
    To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
    Matched MeSH terms: Nanotechnology
  3. Lalani S, Gew LT, Poh CL
    Peptides, 2021 Feb;136:170443.
    PMID: 33171280 DOI: 10.1016/j.peptides.2020.170443
    The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an antiviral that could serve as a safe, potent and robust therapy against the neurovirulent Enterovirus A71 (EV-A71). Natural peptides such as lactoferrin, melittin and synthetic peptides such as SP40, RGDS and LVLQTM have been studied against EV-A71 and have shown promising results as potent antivirals in pre-clinical studies. Peptides are considered safe, efficacious and pose fewer chances of resistance. Poor pharmacokinetic features of peptides can be overcome by the use of chemical modifications to improve in vivo delivery particularly by oral route. The use of nanotechnology can remarkably assist in the oral delivery of peptides and enhance stability in vivo. This can greatly increase patient compliance and make it more attractive as antiviral therapy.
    Matched MeSH terms: Nanotechnology
  4. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM
    Panminerva Med, 2018 Dec;60(4):230-231.
    PMID: 30563304 DOI: 10.23736/S0031-0808.18.03459-6
    Matched MeSH terms: Nanotechnology/methods*
  5. Dua K, Madan JR, Chellappan DK, Gupta G
    Panminerva Med, 2018 09;60(3):135-136.
    PMID: 30176702 DOI: 10.23736/S0031-0808.18.03442-0
    Matched MeSH terms: Nanotechnology*
  6. Lin HL, Mohamed Shukri FN, Yih ES, Sha GH, Jing GS, Jin GW, et al.
    Panminerva Med, 2023 Sep;65(3):362-375.
    PMID: 31663302 DOI: 10.23736/S0031-0808.19.03655-3
    Diabetes mellitus is a chronic metabolic condition characterized by an elevation of blood glucose levels, resulting from defects in insulin secretion, insulin action, or both. The prevalence of the disease has been rapidly rising all over the globe at an alarming rate. Despite advances in the management of diabetes mellitus, it remains a growing epidemic that has become a significant public health burden due to its high healthcare costs and its complications. There is no cure has yet been found for the disease, however, treatment modalities include insulin and antidiabetic agents along with lifestyle modifications are still the mainstay of therapy for diabetes mellitus. The treatment spectrum for the management of diabetes mellitus has rapidly developed in recent years, with new class of therapeutics and expanded indications. This article focused on the emerging therapeutic approaches other than the conventional pharmacological therapies, which include stem cell therapy, gene therapy, siRNA, nanotechnology and theranostics.
    Matched MeSH terms: Nanotechnology
  7. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Nanotechnology
  8. Ali HS, Khan S, York P, Shah SM, Khan J, Hussain Z, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1635-1643.
    PMID: 29084684
    Drug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.9 mV ± 0.6 mV. Nanosized particles were found to have a rod shape with a narrow particle size distribution (PDI =0.17). Results of differential scanning calorimetry and X-ray diffraction analyses revealed minor modifications of crystallinity of hydrocortisone following the milling process. Solubility of hydrocortisone was enhanced by nanonization to 875µg/ml ±2.5, an almost 2.9-fold compared to the raw hydrocortisone. Moreover, the nanosuspension formulation substabtially enhanced the dissolution rate of hydrocortisone where >97% of the hydrocortisone was dissolved within 10 minutes opposed to 22.3% for the raw 50% for the raw hydrocortisone and the commercial tablet, respectively. The bioavailability study resulted in AUC 0-9h for HC nanosuspensions (31.50±2.50), which is significantly (p<0.05) higher compared to the AUC 0-9h (14.85±3.25) resulted for HC solution. The nanosuspension was physically stable at room temperature for 24 months.
    Matched MeSH terms: Nanotechnology
  9. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 07;392(7):755-771.
    PMID: 31098696 DOI: 10.1007/s00210-019-01666-7
    Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
    Matched MeSH terms: Nanotechnology
  10. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
    Matched MeSH terms: Nanotechnology/methods*
  11. Dehzangi A, Abdullah AM, Larki F, Hutagalung SD, Saion EB, Hamidon MN, et al.
    Nanoscale Res Lett, 2012;7(1):381.
    PMID: 22781031 DOI: 10.1186/1556-276X-7-381
    The junctionless nanowire transistor is a promising alternative for a new generation of nanotransistors. In this letter the atomic force microscopy nanolithography with two wet etching processes was implemented to fabricate simple structures as double gate and single gate junctionless silicon nanowire transistor on low doped p-type silicon-on-insulator wafer. The etching process was developed and optimized in the present work compared to our previous works. The output, transfer characteristics and drain conductance of both structures were compared. The trend for both devices found to be the same but differences in subthreshold swing, 'on/off' ratio, and threshold voltage were observed. The devices are 'on' state when performing as the pinch off devices. The positive gate voltage shows pinch off effect, while the negative gate voltage was unable to make a significant effect on drain current. The charge transmission in devices is also investigated in simple model according to a junctionless transistor principal.
    Matched MeSH terms: Nanotechnology
  12. Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S
    Nanoscale Res Lett, 2020 Nov 04;15(1):207.
    PMID: 33146807 DOI: 10.1186/s11671-020-03438-2
    Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
    Matched MeSH terms: Nanotechnology
  13. Toh PY, Ng BW, Ahmad AL, Chieh DC, Lim J
    Nanoscale, 2014 Nov 7;6(21):12838-48.
    PMID: 25227473 DOI: 10.1039/c4nr03121k
    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
    Matched MeSH terms: Nanotechnology/methods*
  14. Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ
    Nanoscale, 2019 Jan 23;11(4):1475-1504.
    PMID: 30620019 DOI: 10.1039/c8nr08738e
    Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
    Matched MeSH terms: Nanotechnology
  15. Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, et al.
    Nanomedicine, 2021 01;31:102303.
    PMID: 32980549 DOI: 10.1016/j.nano.2020.102303
    MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
    Matched MeSH terms: Nanotechnology/methods
  16. Chan Y, MacLoughlin R, Zacconi FC, Tambuwala MM, Pabari RM, Singh SK, et al.
    Nanomedicine (Lond), 2021 07;16(16):1351-1355.
    PMID: 33998829 DOI: 10.2217/nnm-2021-0087
    Matched MeSH terms: Nanotechnology
  17. Masanam HB, Perumal G, Krishnan S, Singh SK, Jha NK, Chellappan DK, et al.
    Nanomedicine (Lond), 2022 Oct;17(25):1981-2005.
    PMID: 36695290 DOI: 10.2217/nnm-2021-0427
    The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.
    Matched MeSH terms: Nanotechnology/methods
  18. Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Rahmati MA, et al.
    Nanomedicine (Lond), 2021 Mar;16(6):497-516.
    PMID: 33683164 DOI: 10.2217/nnm-2020-0441
    COVID-19, as an emerging infectious disease, has caused significant mortality and morbidity along with socioeconomic impact. No effective treatment or vaccine has been approved yet for this pandemic disease. Cutting-edge tools, especially nanotechnology, should be strongly considered to tackle this virus. This review aims to propose several strategies to design and fabricate effective diagnostic and therapeutic agents against COVID-19 by the aid of nanotechnology. Polymeric, inorganic self-assembling materials and peptide-based nanoparticles are promising tools for battling COVID-19 as well as its rapid diagnosis. This review summarizes all of the exciting advances nanomaterials are making toward COVID-19 prevention, diagnosis and therapy.
    Matched MeSH terms: Nanotechnology/methods
  19. Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS
    Nanomaterials (Basel), 2018 Apr 13;8(4).
    PMID: 29652827 DOI: 10.3390/nano8040236
    Modifications of virus-like nanoparticles (VLNPs) using chemical conjugation techniques have brought the field of virology closer to nanotechnology. The huge surface area to volume ratio of VLNPs permits multiple copies of a targeting ligand and drugs to be attached per nanoparticle. By exploring the chemistry of truncated hepatitis B core antigen (tHBcAg) VLNPs, doxorubicin (DOX) was coupled covalently to the external surface of these nanoparticles via carboxylate groups. About 1600 DOX molecules were conjugated on each tHBcAg VLNP. Then, folic acid (FA) was conjugated to lysine residues of tHBcAg VLNPs to target the nanoparticles to cancer cells over-expressing folic acid receptor (FR). The result demonstrated that the dual bioconjugated tHBcAg VLNPs increased the accumulation and uptake of DOX in the human cervical and colorectal cancer cell lines compared with free DOX, resulting in enhanced cytotoxicity of DOX towards these cells. The fabrication of these dual bioconjugated nanoparticles is simple, and drugs can be easily conjugated with a high coupling efficacy to the VLNPs without any limitation with respect to the cargo's size or charge, as compared with the pH-responsive system based on tHBcAg VLNPs. These dual bioconjugated nanoparticles also have the potential to be modified for other combinatorial drug deliveries.
    Matched MeSH terms: Nanotechnology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links