Displaying all 16 publications

Abstract:
Sort:
  1. Jalil MA, Tasakorn M, Suwanpayak N, Ali J, Yupapin PP
    IEEE Trans Nanobioscience, 2011 Jun;10(2):106-12.
    PMID: 21518667 DOI: 10.1109/TNB.2011.2142421
    A novel design of nanoscopic volume transmitter and receiver for drug delivery system using a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as the optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the nanoscopic volumes (drug) can be trapped and moved (transport) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system (device), which is called a transceiver, which is available for nanoscopic volume (drug volume) trapping and transportation (delivery).
    Matched MeSH terms: Nanotechnology/instrumentation*
  2. Akbari E, Buntat Z, Ahmad MH, Enzevaee A, Yousof R, Iqbal SM, et al.
    Sensors (Basel), 2014;14(3):5502-15.
    PMID: 24658617 DOI: 10.3390/s140305502
    Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I-V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.
    Matched MeSH terms: Nanotechnology/instrumentation*
  3. Aziz MS, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Jun;41(3):178-83.
    PMID: 22991944 DOI: 10.3109/10731199.2012.715087
    This paper presents the use of a modified add/drop optical filter incorporating with microring resonators known as a PANDA microring resonator system which can fabricate on small chip. By using an optical tweezer, the required molecules can be trapped and moved to the required destinations at the add/drop ports. The novelty is that the stored molecules in the designed chip can transport via the optical waveguide and can also be used to form molecular filter, which is an important technique for drug delivery, drug targeting, and molecular electronics. Results have shown that the multivariable filter can be obtained by tunable trapping control.
    Matched MeSH terms: Nanotechnology/instrumentation*
  4. Aziz MS, Jalil MA, Suwanpayak N, Ali J, Yupapin PP
    PMID: 22409282 DOI: 10.3109/10731199.2012.658470
    Optical vorticesare generated and controlled to form trapping tools in the same way as optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the required atoms/molecules can be trapped and moved (transported) dynamically within the wavelength router or network. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is available for atoms/molecules storage and transportation based on methods that have been proposed to deliver drugs into cells for specific diagnosis.
    Matched MeSH terms: Nanotechnology/instrumentation*
  5. Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M, Fukuda T
    IEEE Trans Nanobioscience, 2012 Mar;11(1):70-8.
    PMID: 22275723 DOI: 10.1109/TNB.2011.2179809
    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
    Matched MeSH terms: Nanotechnology/instrumentation
  6. Jalil MA, Suwanpayak N, Kulsirirat K, Suttirak S, Ali J, Yupapin PP
    Int J Nanomedicine, 2011;6:2925-32.
    PMID: 22131837 DOI: 10.2147/IJN.S26266
    A novel nanomicro syringe system was proposed for drug storage and delivery using a PANDA ring resonator and atomic buffer. A PANDA ring is a modified optical add/drop filter, named after the well known Chinese bear. In principle, the molecule/drug is trapped by the force generated by different combinations of gradient fields and scattering photons within the PANDA ring. A nanomicro needle system can be formed by optical vortices in the liquid core waveguide which can be embedded on a chip, and can be used for long-term treatment. By using intense optical vortices, the required genes/molecules can be trapped and transported dynamically to the intended destinations via the nanomicro syringe, which is available for drug delivery to target tissues, in particular tumors. The advantage of the proposed system is that by confining the treatment area, the effect can be decreased. The use of different optical vortices for therapeutic efficiency is also discussed.
    Matched MeSH terms: Nanotechnology/instrumentation*
  7. Leo CP, Chai WK, Mohammad AW, Qi Y, Hoedley AF, Chai SP
    Water Sci Technol, 2011;64(1):199-205.
    PMID: 22053475
    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus.
    Matched MeSH terms: Nanotechnology/instrumentation
  8. Senthilpari C, Diwakar K, Singh AK
    Recent Pat Nanotechnol, 2009;3(1):61-72.
    PMID: 19149756
    The paper discuss the design of 1-bit full adder circuit using Shannon theorem. This proposed full adder circuit is used as one of the circuit component for implementation of Non- Restoring and Restoring divider circuits. The proposed adder and divider schematics are designed by using DSCH2 CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The divider circuits are designed by using standard CMOS 0.35 microm feature size and corresponding power supply 3.5 V. The parameters analyses are carried out by BSIM 4 analysis. We have compared the simulated results of the Shannon based divider circuit with CPL and CMOS adder cell based divider circuits. We have further compared the results with published results and observed that the proposed adder cell based divider circuit dissipates lower power, gives faster response, lower latency, low EPI and high throughput.
    Matched MeSH terms: Nanotechnology/instrumentation*
  9. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Nanotechnology/instrumentation
  10. Zamiri R, Zakaria A, Ahangar HA, Darroudi M, Zamiri G, Rizwan Z, et al.
    Int J Nanomedicine, 2013;8:233-44.
    PMID: 23345971 DOI: 10.2147/IJN.S36036
    Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver-starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a bandwidth of ~6 nm 'full width at half maximum' (FWHM). Stability measurements showed no significant changes in mean particle size or agglomeration or even flocculation. However, zeta potential measurements showed that optimal double layer charge is achieved at 30 Hz. Consequently, Ag-NP synthesis via the laser ablation synthesis in solution (LASiS) method in starch solution seems to be a trade-off between small size and narrow size distributions and inherent and long-term stability.
    Matched MeSH terms: Nanotechnology/instrumentation
  11. Ngadiman NH, Mohd Yusof N, Idris A, Kurniawan D
    Proc Inst Mech Eng H, 2016 Aug;230(8):739-49.
    PMID: 27194535 DOI: 10.1177/0954411916649632
    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.
    Matched MeSH terms: Nanotechnology/instrumentation
  12. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2019 Sep 15;141:111434.
    PMID: 31238281 DOI: 10.1016/j.bios.2019.111434
    The pragmatic outcome of a lung cancer diagnosis is closely interrelated in reducing the number of fatal death caused by the world's top cancerous disease. Regardless of the advancement made in understanding lung tumor, and its multimodal treatment, in general the percentage of survival remain low. Late diagnosis of a cancerous cell in patients is the major hurdle for the above circumstances. In the new era of a lung cancer diagnosis with low cost, portable and non-invasive clinical sampling, nanotechnology is at its inflection point where current researches focus on the implementation of biosensor conjugated nanomaterials for the generation of the ideal sensing. The present review encloses the superiority of nanomaterials from zero to three-dimensional nanostructures in its discrete and nanocomposites nanotopography on sensing lung cancer biomarkers. Recent researches conducted on definitive nanomaterials and nanocomposites at multiple dimension with distinctive physiochemical property were focused to subside the cases associated with lung cancer through the development of novel biosensors. The hurdles encountered in the recent research and future preference with prognostic clinical lung cancer diagnosis using multidimensional nanomaterials and its composites are presented.
    Matched MeSH terms: Nanotechnology/instrumentation
  13. Dalila R N, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM
    Biosens Bioelectron, 2019 May 01;132:248-264.
    PMID: 30878725 DOI: 10.1016/j.bios.2019.03.005
    Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
    Matched MeSH terms: Nanotechnology/instrumentation
  14. Al-Edresi S, Baie S
    Int J Pharm, 2009 May 21;373(1-2):174-8.
    PMID: 19429303 DOI: 10.1016/j.ijpharm.2009.02.011
    Virgin coconut oil (VCO)-in-water, nano-emulsion in the form of cream stabilized by Emulium Kappa as an emulsifier, was prepared by using the Emulsion Inversion Point method. A nano-emulsion with droplet size <300 nm was then obtained. VCO has recently become a more popular new material in the cosmetic industries. Emulium Kappa is an ionic emulsifier that contains sodium stearoyl lactylate, the active whitening ingredient was Kojic Dipalmitate. Ostwald ripening is the main destabilizing factor for the nano-emulsion. This decline can be reduced by adding non-soluble oil, namely squalene, to the virgin coconut oil. We tested VCO:squalene in the ratios of 10:0, 9.8:0.2, 9.6:0.4, 9.4:0.6, 9.2:0.8, 9:1 and 8:2 and discovered that squalene's higher molecular weight (above critical molecular weight) resulted in low polarity and insolubility in the continuous phase. The continuous partitioning between the droplets results in the decline of Ostwald ripening. Furthermore, flocculation may occur due to the instability of nano-emulsion, especially for the preparations with little or no squalene at all. The stability of the nano-emulsion was evaluated by the electrophoretic properties of the emulsion droplets. The zeta potential values for the emulsion increased as the percentage of squalene oil increased.
    Matched MeSH terms: Nanotechnology/instrumentation
  15. Geetha Bai R, Muthoosamy K, Zhou M, Ashokkumar M, Huang NM, Manickam S
    Biosens Bioelectron, 2017 Jan 15;87:622-629.
    PMID: 27616288 DOI: 10.1016/j.bios.2016.09.003
    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer.
    Matched MeSH terms: Nanotechnology/instrumentation
  16. Hussein MZ, Mohd Amin JB, Zainal Z, Yahaya AH
    J Nanosci Nanotechnol, 2002 Apr;2(2):143-6.
    PMID: 12908300
    Hydrotalcite-like inorganic layers of Zn-Al, a host containing an organic moiety, 2,4-dichlorophenoxy-acetate, as a guest, was prepared by the spontaneous self-assembly method from an aqueous solution for the formation of a new layered organic-inorganic hybrid nanocomposite material. In this synthesis, the host- and guest-forming species were simultaneously included in the mother liquor, aged, and separated. Various Zn/Al ratios (R = 2, 3, and 4), concentrations of 2,4-dichlorophenoxyacetic acid (0.03-0.1 M), and pH (7 and 10) were studied to optimize the formation of the layered nancomposite. It was found that the optimum conditions for the formation of the nanocomposite were R = 4, pH 7, and concentration of 2,4-dichlorophenoxyacetic acid = 0.08 M. X-ray diffraction shows that this sample affords a nanolayered structure with a basal spacing of 24.6 A.
    Matched MeSH terms: Nanotechnology/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links