Displaying publications 41 - 60 of 125 in total

Abstract:
Sort:
  1. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Photosynthesis/drug effects*; Photosynthesis/physiology
  2. Zhang W, Mohamed AR, Ong WJ
    Angew Chem Int Ed Engl, 2020 Dec 14;59(51):22894-22915.
    PMID: 32009290 DOI: 10.1002/anie.201914925
    Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
    Matched MeSH terms: Photosynthesis
  3. Yu X, Ng SF, Putri LK, Tan LL, Mohamed AR, Ong WJ
    Small, 2021 12;17(48):e2006851.
    PMID: 33909946 DOI: 10.1002/smll.202006851
    Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.
    Matched MeSH terms: Photosynthesis
  4. Takanashi S, Kosugi Y, Matsuo N, Tani M, Ohte N
    Tree Physiol, 2006 Dec;26(12):1565-78.
    PMID: 17169896
    Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.
    Matched MeSH terms: Photosynthesis/physiology*
  5. Kosugi Y, Takanashi S, Matsuo N, Nik AR
    Tree Physiol, 2009 Apr;29(4):505-15.
    PMID: 19203974 DOI: 10.1093/treephys/tpn041
    We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.
    Matched MeSH terms: Photosynthesis/physiology
  6. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Photosynthesis
  7. Inoue Y, Ichie T, Kenzo T, Yoneyama A, Kumagai T, Nakashizuka T
    Tree Physiol, 2017 10 01;37(10):1301-1311.
    PMID: 28541561 DOI: 10.1093/treephys/tpx053
    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations.
    Matched MeSH terms: Photosynthesis*
  8. Mohd Nani SZ, Majid FA, Jaafar AB, Mahdzir A, Musa MN
    PMID: 28105060 DOI: 10.1155/2016/6520475
    Deep sea water (DSW) commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.
    Matched MeSH terms: Photosynthesis
  9. Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH
    Ann Bot, 2017 Mar 01;119(4):517-532.
    PMID: 28065926 DOI: 10.1093/aob/mcw242
    BACKGROUND AND AIMS: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed.

    METHODS: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop.

    KEY RESULTS: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area.

    CONCLUSIONS: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.

    Matched MeSH terms: Photosynthesis
  10. Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, et al.
    Plant Physiol, 2018 Feb;176(2):1233-1246.
    PMID: 29217593 DOI: 10.1104/pp.17.01213
    Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.
    Matched MeSH terms: Photosynthesis/physiology*
  11. Najib MZM, Salmiati, Ujang Z, Salim MR, Ibrahim Z, Muda K
    Bioresour Technol, 2016 Dec;221:157-164.
    PMID: 27639234 DOI: 10.1016/j.biortech.2016.08.119
    The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO2) removal in POME for one complete SBR cycle. Also, the granules had reached CO2 removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO2 from gas to liquid as well as the simultaneous effect of CO2 production and respiration among the microbes. Furthermore, results showed the removal of CO2 from air increases proportionally with the CO2 removed in liquid. The CO2 biofixation of granules attained was approximately 0.23g/L/day for a week. Using the regression model, the removal of CO2 between liquid and gas, CO2 biofixation rate were highly correlated with the treatment time. A statistically significant relationship was obtained between CO2 concentration in liquid, biomass productivity and treatment time for the CO2 biofixation rate of the granules.
    Matched MeSH terms: Photosynthesis
  12. Mohd Yusof FF, Yaacob JS, Osman N, Ibrahim MH, Wan-Mohtar WAAQI, Berahim Z, et al.
    Plants (Basel), 2021 Mar 23;10(3).
    PMID: 33806923 DOI: 10.3390/plants10030608
    The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m-2 s-1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks' exposure.
    Matched MeSH terms: Photosynthesis
  13. Goh HH, Baharin A, Mohd Salleh F', Ravee R, Wan Zakaria WNA, Mohd Noor N
    Sci Rep, 2020 04 20;10(1):6575.
    PMID: 32313042 DOI: 10.1038/s41598-020-63696-z
    Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
    Matched MeSH terms: Photosynthesis/genetics
  14. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al.
    Biomolecules, 2021 02 10;11(2).
    PMID: 33578851 DOI: 10.3390/biom11020256
    As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.
    Matched MeSH terms: Photosynthesis
  15. Nasrulhaq-Boyce A, Mohamed MAH
    New Phytol, 1987 Jan;105(1):81-88.
    PMID: 33874033 DOI: 10.1111/j.1469-8137.1987.tb00112.x
    A comparative study of four Malayan ferns, Christensenia aesculifolia (Bl.) Maxon, Tectaria singaporeana (Wall.) Ching, Abacopteris multilineata (Wall.) Ching and Hymenophyllum polyanthos Sw. from shady habitats and another four, Dicranopteris linearis (Burm.) Und., Lygodium scandens (L.) Sw., Blechnum orientate Linn, and Stenochlaena palustris (Burm.) Bedd. from sunlit habitats showed that the total chlorophyll content expressed on a gram fresh weight basis was greater in the shade ferns. There was little difference in the chlorophyll content between the sun and shade ferns when it was expressed on a per unit leaf area basis. The protein and protohaem content was greater in the sun ferns. Measurements of the in vitro photochemical activities of the photosystems I and II in isolated chloroplasts by means of an oxygen electrode showed higher rates in the sun ferns. As determined by spectrophotometric analysis, the photosynthetic cytochrome content from isolated chloroplasts was greater in the sun ferns. The results indicate that the sun ferns have physiological characteristics favouring greater capacity for photosynthesis. Mitochondria isolated from the sun ferns showed faster rates of electron transport using exogenous NADH as substrate.
    Matched MeSH terms: Photosynthesis
  16. Jaafar HZ, Ibrahim MH, Mohamad Fakri NF
    Molecules, 2012 Jun 13;17(6):7305-22.
    PMID: 22695235 DOI: 10.3390/molecules17067305
    A randomized complete block design 2 × 4 experiment was designed and conducted for 15 weeks to characterize the relationships between production of total phenolics, flavonoid, anthocyanin, leaf gas exchange, total chlorophyll, phenylalanine ammonia-lyase (PAL) and malondialdehyde (MDA) activity in two varieties of Labisia pumila Benth, namely the var. alata and pumila, under four levels of evapotranspiration replacement (ER) (100%; well watered), (75%, moderate water stress), (50%; high water stress) and (25%; severe water stress). The production of total phenolics, flavonoids, anthocyanin, soluble sugar and relative leaf water content was affected by the interaction between varieties and SWC. As the ER levels decreased from 100% to 25%, the production of PAL and MDA activity increased steadily. At the highest (100%) ER L. pumila exhibited significantly higher net photosynthesis, apparent quantum yield, maximum efficiency of photosystem II (f(v)/f(m)) and lower dark respiration rates compared to the other treatment. The production of total phenolics, flavonoids and anthocyanin was also found to be higher under high water stress (50% ER replacement) compared to severe water stress (25% ER). From this study, it was observed that as net photosynthesis, apparent quantum yield and chlorophyll content were downregulated under high water stress the production of total phenolics, flavonoids and anthocyanin were upregulated implying that the imposition of high water stress can enhance the medicinal properties of L. pumila Benth.
    Matched MeSH terms: Photosynthesis*
  17. Abdul-Hamid H, Mencuccini M
    Tree Physiol, 2009 Jan;29(1):27-38.
    PMID: 19203930 DOI: 10.1093/treephys/tpn001
    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.
    Matched MeSH terms: Photosynthesis/physiology*
  18. Lau NS, Foong CP, Kurihara Y, Sudesh K, Matsui M
    PLoS One, 2014;9(1):e86368.
    PMID: 24466058 DOI: 10.1371/journal.pone.0086368
    The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications.
    Matched MeSH terms: Photosynthesis*
  19. Gao X, Chai HH, Ho WK, Mayes S, Massawe F
    BMC Plant Biol, 2023 May 30;23(1):287.
    PMID: 37248451 DOI: 10.1186/s12870-023-04293-w
    BACKGROUND: Assessment of segregating populations for their ability to withstand drought stress conditions is one of the best approaches to develop breeding lines and drought tolerant varieties. Bambara groundnut (Vigna subterranea L. Verdc.) is a leguminous crop, capable of growing in low-input agricultural systems in semi-arid areas. An F4 bi-parental segregating population obtained from S19-3 × DodR was developed to evaluate the effect of drought stress on photosynthetic parameters and identify QTLs associated with these traits under drought-stressed and well-watered conditions in a rainout shelter.

    RESULTS: Stomatal conductance (gs), photosynthesis rate (A), transpiration rate (E) and intracellular CO2 (Ci) were significantly reduced (p 

    Matched MeSH terms: Photosynthesis/genetics
  20. Ishida A, Toma T, Matsumoto Y, Yap SK, Maruyama Y
    Tree Physiol, 1996 Sep;16(9):779-85.
    PMID: 14871685
    Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.
    Matched MeSH terms: Photosynthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links