Displaying publications 41 - 60 of 296 in total

Abstract:
Sort:
  1. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54222-54237.
    PMID: 34386926 DOI: 10.1007/s11356-021-15826-x
    Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
    Matched MeSH terms: Plastics*
  2. Chen JC, Fang C, Zheng RH, Hong FK, Jiang YL, Zhang M, et al.
    Mar Environ Res, 2021 May;167:105295.
    PMID: 33714106 DOI: 10.1016/j.marenvres.2021.105295
    Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.
    Matched MeSH terms: Plastics
  3. Chenappan NK, Ibrahim YS, Anuar ST, Yusof KMKK, Jaafar M, Ahamad F, et al.
    Environ Monit Assess, 2024 Feb 07;196(3):242.
    PMID: 38324118 DOI: 10.1007/s10661-024-12381-z
    Microplastics (MPs) pose a threat to ecosystems due to their capacity to bind with toxic chemicals. While the occurrence of MPs in aquatic environmental matrices like water, sediments, and biota is well studied, their presence in the atmosphere remains less understood. This study aimed to determine the presence of airborne MPs and their characteristics through ground-based sampling in the coastal city of Kuala Nerus, Terengganu, Malaysia. Airborne MP samples were collected using passive sampling technique in December 2019. MPs were manually counted and identified using a stereomicroscope based on their colour and shape. The average deposition rate of airborne MPs during the sampling period was 5476 ± 3796 particles/m2/day, ranging from 576 to 15,562 particles/m2/day. Various colours such as transparent (38%), blue (25%), black (20%), red (13%), and others (4%) were observed. The predominant shape of airborne MPs was fibres (> 99%). The morphology structure of MPs observed using a scanning electron microscope (SEM) showed a cracked surface on MPs, suggesting weathering and irregular fragmentation. Further elemental analysis using energy dispersive X-ray spectroscopy (EDS) showed the presence of heavy metals such as aluminium (Al) and cadmium (Cd) on the surface of MPs, attributed to the adsorption capacities of MPs. Polymer types of airborne MPs were analysed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), which revealed particles composed of polyester (PES), polyethylene (PE), and polypropylene (PP). The preliminary findings could provide additional information for further investigations of MPs, especially in the atmosphere, to better understand their sources and potential human exposure.
    Matched MeSH terms: Plastics
  4. Chengappa S K, Rao A, K S A, Jodalli PS, Shenoy Kudpi R
    F1000Res, 2023;12:390.
    PMID: 37521767 DOI: 10.12688/f1000research.132035.1
    Background: Microplastic particles are used as ingredients in personal care products such as face washes, shower gels and toothpastes and form one of the main sources of microplastic pollution, especially in the marine environment. In addition to being a potential pollutant to the environment, the transfer of microplastics to humans can become a severe threat to public health. This systematic review was conceptualized to identify evidence for the presence of and characteristics of microplastics in toothpaste formulations. Methods: The PICOS Criteria was used for including studies for the review. Electronic databases of Scopus, Embase, Springer Link, PubMed, Web of Science and Google Scholar were searched, as well as hand and reference searching of the articles was carried out. The articles were screened using the software application, Covidence® and data was extracted. Results: This systematic review showed that toothpastes from China, Vietnam, Myanmar and the UAE, reported no evidence of microplastics and those from Malaysia, Turkey and India reported the presence of microplastics. The shape of the microplastics present in these toothpastes were found to be granular, irregular with opaque appearance and also in the form of fragments and fibers and the percentage weight in grams ranged from 0.2 to 7.24%. Malaysia releases 0.199 trillion microbeads annually from personal care products into the environment and toothpastes in Turkey release an average of 871 million grams of microplastics annually. Similarly, in India, it has been reported that 1.4 billion grams of microplastic particles are emitted annually from toothpaste. Conclusions: The findings of this systematic review provide evidence that toothpastes, at least in some parts of the world, do contain microplastics and that there is a great risk of increase in the addition of microplastics to the environment by the use of toothpaste.
    Matched MeSH terms: Plastics
  5. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Plastics
  6. Chieng BW, Ibrahim NA, Then YY, Loo YY
    Polymers (Basel), 2017 Jun 02;9(6).
    PMID: 30970882 DOI: 10.3390/polym9060204
    A renewable resource, epoxidized jatropha oil (EJO), was used as a green plasticizer and added to poly(lactic acid) (PLA). EJO was compounded into PLA at different contents. The addition of 3 wt % EJO to the PLA demonstrates significant improvement in flexibility, which leads to a percentage increase of about 7000% in elongation at break. This tensile result was confirmed by surface morphology analysis with clear proof of plastic deformation in EJO-plasticized PLA. EJO imparts a good heat stabilization effect. Thermal stability of PLA was enhanced upon addition of EJO, which is due to their good interaction and plasticizer dispersion within the PLA matrix. This EJO-plasticized PLA has wide applications in various industries, such as packaging of food and non-food products.
    Matched MeSH terms: Plastics
  7. Chieng, Buong Woei, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus, Mohd Zobir Hussein
    MyJurnal
    Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.
    Matched MeSH terms: Plastics
  8. Chong HC, Fong KK, Hayati F
    Ann Med Surg (Lond), 2021 Apr;64:102267.
    PMID: 33889406 DOI: 10.1016/j.amsu.2021.102267
    Background: Extravasation injury (EVI) is common, yet it is always underestimated and underreported. Severity varies ranging from thrombophlebitis up to disability. Unrecognised EVI is a potential medicolegal case in medicine.

    Case presentation: We experience a 47-year-old lady who developed an unrecognised EVI after being admitted for sepsis. The EVI turned out to be a huge and sloughy skin ulcer. A series of wound debridement with vacuum dressing were conducted until the wound was able to be closed.

    Discussion: The EVI can be categorised according to Amjad EVI grading and Loth and Eversmann's EVI classification. Adult EVI tends to be overlooked, especially during critical care because patients cannot complain upon sedation and ventilation. In order to prevent EVI, firstly prevention is better than cure. Secondly, if EVI is recognised early, infusion should be stopped immediately. Thirdly, analgesia is mandatory. Finally, the plastic team needs to be engaged if it is deemed required.

    Conclusion: Prevention and early intervention before the occurrence of progressive tissue damage is the key to treatment. Early radical wound debridement and immediate or delayed wound coverage with skin graft or skin flap are indicated in full thickness skin necrosis, persistent pain, and chronic ulcer.

    Matched MeSH terms: Plastics
  9. Chong SS, Aziz AR, Harun SW, Arof H
    Sensors (Basel), 2014;14(9):15836-48.
    PMID: 25166498 DOI: 10.3390/s140915836
    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.
    Matched MeSH terms: Plastics/chemistry*
  10. Chou LY, Dykes GA, Wilson RF, Clarke CM
    Environ Entomol, 2016 Feb;45(1):201-6.
    PMID: 26518035 DOI: 10.1093/ee/nvv164
    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present.
    Matched MeSH terms: Plastics
  11. Chun T'ing L, Moorthy K, Yoon Mei C, Pik Yin F, Zhi Ying W, Wei Khong C, et al.
    Heliyon, 2020 Dec;6(12):e05805.
    PMID: 33409389 DOI: 10.1016/j.heliyon.2020.e05805
    This research was conducted to explore the factors affecting Malaysians' application of reduce, reuse and recycle (3Rs) concept in plastic usage. This study adopted variables from the Theory of Planned Behaviour (TPB), namely, attitude, subjective norm and perceived behavioural control and added on two more variables, habit and facilitating conditions to study the plastic usage. Self-administered questionnaires were used to collect the data and analysis done. The results showed that all variables influence the plastic usage behaviour. This research contributes to a better understanding of the relationship between the determinants of behavioural intention of 3Rs application on plastic usage. Through the suggestions of suitable strategies, this research would contribute to reducing environment pollution caused by plastic waste.
    Matched MeSH terms: Plastics
  12. Curren E, Leaw CP, Lim PT, Leong SCY
    Front Bioeng Biotechnol, 2020;8:562760.
    PMID: 33344429 DOI: 10.3389/fbioe.2020.562760
    Microplastic pollution is a global issue that has a detrimental impact on food safety. In marine environments, microplastics are a threat to marine organisms, as they are often the same size range as prey and are mistaken as food. Consumption of microplastics has led to the damage of digestive organs and a reduction in growth and reproductive output. In this study, microplastic pollution was assessed across three commercially available shrimp species that were obtained from the supermarkets of Singapore. A total of 93 individuals were studied from the Pacific white leg shrimp, Litopenaeus vannamei, the Argentine red shrimp Pleoticus muelleri and the Indian white shrimp Fenneropenaeus indicus. Microplastic fibers, fragments, film and spheres were identified from the digestive tract of these organisms. Microplastic abundance ranged from 13.4 to 7050 items. F. indicus exhibited the highest number of microplastics. Microplastic film was the most abundant in L. vannamei individuals (93-97%) and spheres were the most abundant in P. muelleri (70%) and F. indicus (61%) individuals. This study demonstrates that microplastic contamination is evident in commonly consumed shrimp and highlights the role of shrimp in the trophic transfer and accumulation of microplastics in seafood. The consumption of microplastic-containing seafood is a route of exposure to humans and has implications on human health and food security. Capsule: Microplastics were examined in three shrimp species from the supermarkets of Singapore. Microplastics ranged from 13.4 to 7050 items of shrimp.
    Matched MeSH terms: Plastics
  13. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Environ Pollut, 2021 Nov 01;288:117776.
    PMID: 34280748 DOI: 10.1016/j.envpol.2021.117776
    Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.
    Matched MeSH terms: Plastics
  14. Curren E, Leong SCY
    Sci Total Environ, 2019 Mar 10;655:313-320.
    PMID: 30471599 DOI: 10.1016/j.scitotenv.2018.11.250
    Plastic waste is a global issue of an increasing concern in aquatic ecosystems. Microplastics form a large proportion of plastic pollution in marine environments. Although microplastics are prevalent, their distribution along the coasts of tropical regions is not well studied. Microplastic pieces (1-5 mm) were collected from two distinct regions along the coastlines of Singapore, from the northern coast in the Johor Strait and the southern coast in the Singapore Strait. Microplastics were present in concentrations ranging from 9.20-59.9 particles per kg of dry sand sediment. The majority of microplastics identified were foam particles (55%) and fragments (35%). Microplastics were significantly more abundant on heavily populated beaches compared to pristine beaches. High throughput sequencing was used to profile the communities of bacteria on the surfaces of microplastic particles. The structure of the microbial communities was primarily characterised by Proteobacteria and Bacteroidetes and were distinct across sites. Hydrocarbon-degrading genera such as Erythrobacter were dominant in areas with heavy shipping and pollution. Potential pathogenic genera such as Vibrio and Pseudomonas were also identified. This study highlights the diverse bacterial assemblages present on marine microplastic surfaces and the importance of understanding the bacterial plastisphere.
    Matched MeSH terms: Plastics
  15. Curren E, Leong SCY
    Mar Environ Res, 2024 Jan;193:106251.
    PMID: 37952304 DOI: 10.1016/j.marenvres.2023.106251
    Microplastics are a major constituent of plastic waste and are of an increasing global concern. Although microplastics are prevalent in marine ecosystems, the characterisation of plankton communities has been largely neglected in this aspect, especially in tropical ecosystems. To better understand the role of microplastics as a carrier of harmful plankton in marine ecosystems, epiplastic plankton communities in tropical marine ecosystems were studied from beach sediments along the Johor and Singapore Straits. Complementary analysis of microscopy and high throughput sequencing of the 16S rRNA (V3-V4) and 18S (V4) rRNA regions provided evidence that the plastisphere provided an appropriate environment to host a wide range of planktonic organisms. An average of 781 OTUs were identified across the three sampling sites. The structures of plankton communities were distinct across the sampling sites and were generally dominated by dinoflagellates, fungi and chlorophytes. We demonstrate that marine microplastics serve as microhabitats that are a host to harmful phytoplankton species, including viable resting cysts of dinoflagellates. Furthermore, plastics isolated from the location with the greatest anthropogenic influence demonstrated the greatest plankton diversity. This study presents evidence of diverse toxic plankton species present on the plastisphere and highlights its importance as a vector of the transport of harmful opportunistic species in relation to anthropogenic influence, in the marine environment.
    Matched MeSH terms: Plastics
  16. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Funct Integr Genomics, 2024 Mar 02;24(2):46.
    PMID: 38429576 DOI: 10.1007/s10142-024-01328-9
    Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.
    Matched MeSH terms: Plastics/metabolism
  17. Dewi WN, Zhou Q, Mollah M, Yang S, Ilankoon IMSK, Chaffee A, et al.
    Waste Manag, 2024 Apr 30;179:99-109.
    PMID: 38471253 DOI: 10.1016/j.wasman.2024.03.007
    Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.
    Matched MeSH terms: Plastics/chemistry
  18. Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, et al.
    Chemosphere, 2023 May;324:138270.
    PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270
    The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
    Matched MeSH terms: Plastics/adverse effects
  19. Din MF, Ujang Z, van Loosdrecht MC, Ahmad A, Sairan MF
    Water Sci Technol, 2006;53(6):15-20.
    PMID: 16749434
    The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
    Matched MeSH terms: Plastics
  20. Diyana ZN, Jumaidin R, Selamat MZ, Ghazali I, Julmohammad N, Huda N, et al.
    Polymers (Basel), 2021 Apr 26;13(9).
    PMID: 33925897 DOI: 10.3390/polym13091396
    Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.
    Matched MeSH terms: Plastics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links